Absorbing Angles, Steiner Minimal Trees, and Antipodality

被引:0
|
作者
H. Martini
K. J. Swanepoel
P. Oloff de Wet
机构
[1] Technische Universität Chemnitz,Fakultät für Mathematik
[2] University of South Africa,Department of Decision Sciences
关键词
Steiner minimal trees; Absorbing angles; Antipodality; Face antipodality; Minkowski geometry;
D O I
暂无
中图分类号
学科分类号
摘要
We give a new proof that a star {opi:i=1,…,k} in a normed plane is a Steiner minimal tree of vertices {o,p1,…,pk} if and only if all angles formed by the edges at o are absorbing (Swanepoel in Networks 36: 104–113, 2000). The proof is simpler and yet more conceptual than the original one.
引用
收藏
页码:149 / 157
页数:8
相关论文
共 50 条
  • [21] Improved computation of plane Steiner Minimal Trees
    Cockayne, E.J.
    Hewgill, D.E.
    Algorithmica (New York), 1992, 7 (2-3): : 219 - 229
  • [22] EUCLIDEAN STEINER MINIMAL-TREES WITH OBSTACLES AND STEINER VISIBILITY GRAPHS
    WINTER, P
    DISCRETE APPLIED MATHEMATICS, 1993, 47 (02) : 187 - 206
  • [23] Minimal Steiner trees in X architecture with obstacles
    Luo, CC
    Hwang, YS
    Jan, GE
    CDES '05: PROCEEDINGS OF THE 2005 INTERNATIONAL CONFERENCE ON COMPUTER DESIGN, 2005, : 198 - 203
  • [24] STEINER MINIMAL TREES FOR ZIGZAG LINES WITH LADDERS
    He Yong Yang QifanDept.ofMath.
    Applied Mathematics:A Journal of Chinese Universities, 2001, (02) : 178 - 184
  • [25] Full minimal Steiner trees on lattice sets
    Brazil, M
    Rubinstein, JH
    Thomas, DA
    Weng, JF
    Wormald, NC
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1997, 78 (01) : 51 - 91
  • [26] Steiner minimal trees for zigzag lines with ladders
    He Y.
    Yang Q.
    Applied Mathematics-A Journal of Chinese Universities, 2001, 16 (2) : 178 - 184
  • [27] STEINER MINIMAL-TREES FOR REGULAR POLYGONS
    DU, DZ
    HWANG, FK
    WENG, JF
    DISCRETE & COMPUTATIONAL GEOMETRY, 1987, 2 (01) : 65 - 84
  • [28] ON THE NUMBER OF MINIMAL-1-STEINER TREES
    ARONOV, B
    BERN, M
    EPPSTEIN, D
    DISCRETE & COMPUTATIONAL GEOMETRY, 1994, 12 (01) : 29 - 34
  • [29] Steiner Minimal Trees in Rectilinear and Octilinear Planes
    Song Pu Shang
    Tong Jing
    Acta Mathematica Sinica, English Series, 2007, 23 : 1577 - 1586
  • [30] Steiner minimal trees with one polygonal obstacle
    Weng, JF
    Smith, JM
    ALGORITHMICA, 2001, 29 (04) : 638 - 648