Beyond Conventional Security in Sponge-Based Authenticated Encryption Modes

被引:0
|
作者
Philipp Jovanovic
Atul Luykx
Bart Mennink
Yu Sasaki
Kan Yasuda
机构
[1] École polytechnique fédérale de Lausanne,Decentralized and Distributed Systems Lab
[2] Visa Research,Digital Security Group
[3] Radboud University,undefined
[4] NTT Secure Platform Laboratories,undefined
来源
Journal of Cryptology | 2019年 / 32卷
关键词
Authenticated encryption; CAESAR; Ascon; CBEAM; ICEPOLE; Keyak; NORX; PRIMATEs; STRIBOB; Multi-collisions;
D O I
暂无
中图分类号
学科分类号
摘要
The Sponge function is known to achieve 2c/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{c/2}$$\end{document} security, where c is its capacity. This bound was carried over to its keyed variants, such as SpongeWrap, to achieve a min{2c/2,2κ}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\min \{2^{c/2},2^\kappa \}$$\end{document} security bound, with κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document} the key length. Similarly, many CAESAR competition submissions were designed to comply with the classical 2c/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{c/2}$$\end{document} security bound. We show that Sponge-based constructions for authenticated encryption can achieve the significantly higher bound of min{2b/2,2c,2κ}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\min \{2^{b/2},2^c,2^\kappa \}$$\end{document}, with b>c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b>c$$\end{document} the permutation size, by proving that the CAESAR submission NORX achieves this bound. The proof relies on rigorous computation of multi-collision probabilities, which may be of independent interest. We additionally derive a generic attack based on multi-collisions that matches the bound. We show how to apply the proof to five other Sponge-based CAESAR submissions: Ascon, CBEAM/STRIBOB, ICEPOLE, Keyak, and two out of the three PRIMATEs. A direct application of the result shows that the parameter choices of some of these submissions are overly conservative. Simple tweaks render the schemes considerably more efficient without sacrificing security. We finally consider the remaining one of the three PRIMATEs, APE, and derive a blockwise adaptive attack in the nonce-respecting setting with complexity 2c/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{c/2}$$\end{document}, therewith demonstrating that the techniques cannot be applied to APE.
引用
收藏
页码:895 / 940
页数:45
相关论文
共 50 条
  • [21] On the security of a convertible authenticated encryption
    Zhang, JH
    Wang, YM
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2005, 169 (02) : 1063 - 1069
  • [22] On the security of two authenticated encryption schemes
    Zhang, Jianhong
    Ji, Cheng
    [J]. PROCEEDINGS OF 2008 IEEE INTERNATIONAL CONFERENCE ON NETWORKING, SENSING AND CONTROL, VOLS 1 AND 2, 2008, : 1315 - 1319
  • [23] Security Infrastructure of FANET Based on Secret Sharing and Authenticated Encryption
    Shenets, N. N.
    [J]. AUTOMATIC CONTROL AND COMPUTER SCIENCES, 2019, 53 (08) : 857 - 864
  • [24] Security Infrastructure of FANET Based on Secret Sharing and Authenticated Encryption
    N. N. Shenets
    [J]. Automatic Control and Computer Sciences, 2019, 53 : 857 - 864
  • [25] Multiplex: TBC-Based Authenticated Encryption with Sponge-Like Rate
    Shen, Yaobin
    Peters, Thomas
    Standaert, Francois-Xavier
    [J]. IACR TRANSACTIONS ON SYMMETRIC CRYPTOLOGY, 2024, 2024 (02) : 1 - 34
  • [26] Preliminary Design of a Novel Lightweight Authenticated Encryption Scheme based on the Sponge Function
    Kim, HakJu
    Kim, Kwangjo
    [J]. 2015 10TH ASIA JOINT CONFERENCE ON INFORMATION SECURITY (ASIAJCIS), 2015, : 110 - 111
  • [27] Fault attacks on authenticated encryption modes for GIFT
    Liu, Shuai
    Guan, Jie
    Hu, Bin
    [J]. IET INFORMATION SECURITY, 2022, 16 (01) : 51 - 63
  • [28] The Software Performance of Authenticated-Encryption Modes
    Krovetz, Ted
    Rogaway, Phillip
    [J]. FAST SOFTWARE ENCRYPTION (FSE 2011), 2011, 6733 : 306 - 327
  • [29] A proton sponge-based fluorescent switch
    Xiao, Y
    Fu, MY
    Qian, XH
    Cui, JN
    [J]. TETRAHEDRON LETTERS, 2005, 46 (37) : 6289 - 6292
  • [30] INT-RUP Security of Checksum-Based Authenticated Encryption
    Zhang, Ping
    Wang, Peng
    Hu, Honggang
    Cheng, Changsong
    Kuai, Wenke
    [J]. PROVABLE SECURITY, PROVSEC 2017, 2017, 10592 : 147 - 166