Zero truncated Poisson integer-valued AR(1) model

被引:0
|
作者
Hassan S. Bakouch
Miroslav M. Ristić
机构
[1] Tanta University,Mathematics Department, Faculty of Science
[2] University of Niš,Department of Statistics, Faculty of Sciences and Mathematics
来源
Metrika | 2010年 / 72卷
关键词
Zero truncated Poisson distribution; Integer-valued autoregressive processes; Estimation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce a new stationary integer-valued autoregressive process of the first order with zero truncated Poisson marginal distribution. We consider some properties of this process, such as autocorrelations, spectral density and multi-step ahead conditional expectation, variance and probability generating function. Stationary solution and its uniqueness are obtained with a discussion to strict stationarity and ergodicity of such process. We estimate the unknown parameters by using conditional least squares estimation, nonparametric estimation and maximum likelihood estimation. The asymptotic properties and asymptotic distributions of the conditional least squares estimators have been investigated. Some numerical results of the estimators are presented and some sample paths of the process are illustrated. Some possible applications of the introduced model are discussed.
引用
收藏
页码:265 / 280
页数:15
相关论文
共 50 条
  • [31] Variable selection for first-order Poisson integer-valued autoregressive model with covariables
    Wang, Xinyang
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2020, 62 (02) : 278 - 295
  • [32] Generalized Poisson integer-valued autoregressive processes with structural changes
    Zhang, Chenhui
    Wang, Dehui
    Yang, Kai
    Li, Han
    Wang, Xiaohong
    [J]. JOURNAL OF APPLIED STATISTICS, 2022, 49 (11) : 2717 - 2739
  • [33] Mean targeting estimator for the integer-valued GARCH(1, 1) model
    Qi Li
    Fukang Zhu
    [J]. Statistical Papers, 2020, 61 : 659 - 679
  • [34] A negative binomial integer-valued GARCH model
    Zhu, Fukang
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2011, 32 (01) : 54 - 67
  • [35] INTEGER-VALUED FUNCTION
    PECK, GW
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1979, 86 (05): : 394 - 394
  • [36] A note on integer-valued radial model in DEA
    Khezrimotlagh, Dariush
    Salleh, Shaharuddin
    Mohsenpour, Zahra
    [J]. COMPUTERS & INDUSTRIAL ENGINEERING, 2013, 66 (01) : 199 - 200
  • [37] A generalized mixture integer-valued GARCH model
    Mao, Huiyu
    Zhu, Fukang
    Cui, Yan
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2020, 29 (03): : 527 - 552
  • [38] A Periodic Bivariate Integer-Valued Autoregressive Model
    Monteiro, Magda
    Scotto, Manuel G.
    Pereira, Isabel
    [J]. DYNAMICS, GAMES AND SCIENCE, 2015, 1 : 455 - 477
  • [39] A geometric minification integer-valued autoregressive model
    Aleksic, Milena S.
    Ristic, Miroslav M.
    [J]. APPLIED MATHEMATICAL MODELLING, 2021, 90 : 265 - 280
  • [40] Bayesian generalizations of the integer-valued autoregressive model
    C. Marques F., Paulo
    Graziadei, Helton
    Lopes, Hedibert F.
    [J]. JOURNAL OF APPLIED STATISTICS, 2022, 49 (02) : 336 - 356