Adaptive consistent element-free Galerkin method for phase-field model of brittle fracture

被引:0
|
作者
Yulong Shao
Qinglin Duan
Shasha Qiu
机构
[1] Dalian University of Technology,State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics
来源
Computational Mechanics | 2019年 / 64卷
关键词
Phase-field model; Meshfree; Adaptivity; Brittle fracture; Cracks; EFG;
D O I
暂无
中图分类号
学科分类号
摘要
Efficient implementation of the element-free Galerkin (EFG) method for a phase-field model of linear elastic fracture mechanics is presented, in which the convenience of the meshfree method to construct high order approximation functions and to implement h-adaptivity is fully exploited. A second-order moving-least squares approximation for both displacement and phase field is employed. Domain integration of the weak forms is evaluated by the quadratically consistent 3-point integration scheme. The refinement criterion using maximum residual strain energy history is proposed and the insertion of nodes is based on the background mesh. Numerical results show that the developed method is more efficient than the standard finite element method (3-node triangle element) due to the proposed h-adaptivity. In comparison with the standard EFG method, the proposed consistent EFG method significantly improves the computational efficiency and accuracy. The advantage of the quadratic approximation is also demonstrated. In addition, the feasibility of extending the proposed method to 3D is validated by the modeling of a twisting crack.
引用
收藏
页码:741 / 767
页数:26
相关论文
共 50 条
  • [31] Fracture modeling of brittle biomaterials by the phase-field method
    Wu, Chi
    Fang, Jianguang
    Zhang, Zhongpu
    Entezari, Ali
    Sun, Guangyong
    Swain, Michael, V
    Li, Qing
    ENGINEERING FRACTURE MECHANICS, 2020, 224 (224)
  • [32] A new adaptive scheme for crack analysis with element-free Galerkin method
    Choi, CK
    Lec, GH
    Chung, HJ
    Kim, MS
    Lee, YD
    COMPUTATIONAL MECHANICS, VOLS 1 AND 2, PROCEEDINGS: NEW FRONTIERS FOR THE NEW MILLENNIUM, 2001, : 931 - 936
  • [33] A phase-field model for brittle fracture of anisotropic materials
    Gmati, Hela
    Mareau, Charles
    Ammar, Amine
    El Arem, Saber
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2020, 121 (15) : 3362 - 3381
  • [34] Abaqus implementation of phase-field model for brittle fracture
    Msekh, Mohammed A.
    Sargado, Juan Michael
    Jamshidian, Mostafa
    Areias, Pedro Miguel
    Rabczuk, Timon
    COMPUTATIONAL MATERIALS SCIENCE, 2015, 96 : 472 - 484
  • [35] A phase-field fracture model for brittle anisotropic materials
    Zhiheng Luo
    Lin Chen
    Nan Wang
    Bin Li
    Computational Mechanics, 2022, 70 : 931 - 943
  • [36] Topology Optimization of Structures Using an Adaptive Element-Free Galerkin Method
    Du, Yixian
    Yan, Shuangqiao
    Chen, De
    Long, Qingping
    Li, Xiang
    ADVANCES IN GLOBAL OPTIMIZATION, 2015, 95 : 241 - 249
  • [37] Adaptive element-free Galerkin method applied to the limit analysis of plates
    Le, Canh V.
    Askes, Harm
    Gilbert, Matthew
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (37-40) : 2487 - 2496
  • [38] A phase-field fracture model for brittle anisotropic materials
    Luo, Zhiheng
    Chen, Lin
    Wang, Nan
    Li, Bin
    COMPUTATIONAL MECHANICS, 2022, 70 (05) : 931 - 943
  • [39] Amicromorphic phase-field model for brittle and quasi-brittle fracture
    Bharali, Ritukesh
    Larsson, Fredrik
    Jaenicke, Ralf
    COMPUTATIONAL MECHANICS, 2024, 73 (03) : 579 - 598
  • [40] Model based inversion using the element-free Galerkin method
    Liu, Xin
    Deng, Yiming
    Zeng, Zhiwei
    Udpa, Lalita
    Knopp, Jeremy S.
    MATERIALS EVALUATION, 2008, 66 (07) : 740 - 746