Stability analysis of nonlinear fractional differential equations with Caputo and Riemann-Liouville derivatives

被引:0
|
作者
Aziz Khan
Muhammed I. Syam
Akbar Zada
Hasib Khan
机构
[1] University of Peshawar,Department of Mathematics
[2] Department of Mathematical Sciences,UAE University
[3] College of Science,State Key Laboratory of Hydrology
[4] Hohai University,Water Resources and Hydraulic Engineering
[5] Shaheed Benazir Bhutto University,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the existence and uniqueness of solutions for nonlinear fractional differential equations with Caputo and Riemann-Liouville derivatives, and p -Laplacian operator ϕp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \phi_{p}$\end{document} based on the Banach contraction principle. Also, we investigate the stability results for the proposed problem. Appropriate example is given to demonstrate the established results.
引用
收藏
相关论文
共 50 条