Estimation of chlorophyll-a concentration using field spectral data: a case study in inland Case-II waters, North China

被引:0
|
作者
JingPing Xu
Fang Li
Bai Zhang
KaiShan Song
ZongMing Wang
DianWei Liu
GuangXin Zhang
机构
[1] Chinese Academy of Science,Department of RS and GIS, Northeast Institute of Geography and Agroecology
[2] Graduate School of Chinese Academy of Sciences,undefined
来源
关键词
Remote sensing; Chlorophyll-a; Chlorophyll-a specific absorption coefficient; Model; Inland Case-II waters;
D O I
暂无
中图分类号
学科分类号
摘要
In the remote sensing of chlorophyll-a (Chla) in inland Case-II waters, the assumption that the optical parameter of Chla specific absorption coefficient \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a_{\rm ph}^{\ast}$\end{document} remains constant usually restrains application of many models. In this paper, we presented a newly developed model \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\big[ {R_{\rm rs} ^{-1}( {\lambda _1 } ) -R_{\rm rs} ^{-1}( {\lambda _2 } )} \big]\times R_{\rm rs} ( {\lambda _3 } )\times a_{\rm ph}^{\ast}{}^{-1}( {\lambda _1 } )$\end{document} which was improved on a previous three-band model to isolate interferences from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a_{\rm ph}^{\ast}$\end{document}. In terms of the importance of water optical properties in the model development, spectral and absorption characteristics were analyzed for Shitoukoumen Reservoir and Songhua Lake in Northeast China, as typical examples of inland Case-II waters. Both waters showed overwhelming absorption sum of tripton and chromophoric dissolved organic matter (CDOM) owing to their relatively low Chla contents (1.53 to 19.35 μgl − 1). According to the optical characteristics of waters studied, optimal positions for λ1, λ2 and λ3 were spectrally tuned to be at 664, 684 and 705 nm, respectively. The model allowed accurate Chla estimation with a determination coefficient (R2) close to 0.98 and a root mean square error (RMSE) of 0.87 μgl − 1. Comparison of different models further showed the stability of the improved model, implying its potential use in water color remote sensing. Although the findings underline the rationale behind the improved model, an extensive database containing data in different water conditions and water types is required to generalize its application.
引用
收藏
页码:105 / 116
页数:11
相关论文
共 50 条
  • [21] Using CDOM spectral shape information to improve the estimation of DOC concentration in inland waters: A case study of Andean Patagonian Lakes
    De Stefano, L. G.
    Sanchez Valdivia, A.
    Gianello, D.
    Gerea, M.
    Reissig, M.
    Garcia, P. E.
    Garcia, R. D.
    Soto Cardenas, C.
    Dieguez, M. C.
    Queimalinos, C. P.
    Perez, G. L.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 824
  • [22] Estimation of chlorophyll a content in inland turbidity waters using WorldView-2 imagery: a case study of the Guanting Reservoir, Beijing, China
    Wang, Xing
    Gong, Zhaoning
    Pu, Ruiliang
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2018, 190 (10)
  • [23] Calibration and validation of algorithms for the estimation of chlorophyll-a concentration and Secchi depth in inland waters with Sentinel-2
    Pereira-Sandoval, Marcela
    Patricia Urrego, Esther
    Ruiz-Verdu, Antonio
    Tenjo, Carolina
    Delegido, Jesus
    Soria-Perpinya, Xavier
    Vicente, Eduardo
    Soria, Juan
    Moreno, Jose
    LIMNETICA, 2019, 38 (01): : 471 - 487
  • [24] Estimation of chlorophyll a content in inland turbidity waters using WorldView-2 imagery: a case study of the Guanting Reservoir, Beijing, China
    Xing Wang
    Zhaoning Gong
    Ruiliang Pu
    Environmental Monitoring and Assessment, 2018, 190
  • [25] Inversion of Chlorophyll-a Concentration in Tropical Islands in China: a Case Study of Wuzhizhou Island
    Wang, Feng-Xia
    Yan, Hui-Hui
    PROCEEDINGS OF THE 2018 INTERNATIONAL CONFERENCE ON ENERGY DEVELOPMENT AND ENVIRONMENTAL PROTECTION (EDEP 2018), 2018, 174 : 285 - 290
  • [26] Chlorophyll-a concentration measure in coastal waters using MERIS and MODIS data
    Matarrese, R
    Chiaradia, MT
    De Pasquale, V
    Pasquariello, G
    IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 3639 - 3641
  • [27] NIR-red reflectance-based algorithms for chlorophyll-a estimation in mesotrophic inland and coastal waters: Lake Kinneret case study
    Yacobi, Yosef Z.
    Moses, Wesley J.
    Kaganovsky, Semion
    Sulimani, Benayahu
    Leavitt, Bryan C.
    Gitelson, Anatoly A.
    WATER RESEARCH, 2011, 45 (07) : 2428 - 2436
  • [28] Estimation of Chlorophyll-a Concentrations in the Pearl River Estuary Using In Situ Hyperspectral Data: A Case Study
    Xing, Qianguo
    Chen, Chuqun
    Shi, Heyin
    Shi, Ping
    Zhang, Yuanzhi
    MARINE TECHNOLOGY SOCIETY JOURNAL, 2008, 42 (04) : 22 - 27
  • [29] Algorithms for remote estimation of chlorophyll-a in coastal and inland waters using red and near infrared bands
    Gilerson, Alexander A.
    Gitelson, Anatoly A.
    Zhou, Jing
    Gurlin, Daniela
    Moses, Wesley
    Ioannou, Ioannis
    Ahmed, Samir A.
    OPTICS EXPRESS, 2010, 18 (23): : 24109 - 24125
  • [30] Remote Sensing Estimation of Chlorophyll-A in Case-II Waters of Coastal Areas: Three-Band Model Versus Genetic Algorithm-Artificial Neural Networks Model
    Chen, Jinyue
    Chen, Shuisen
    Fu, Rao
    Wang, Chongyang
    Li, Dan
    Peng, Yongshi
    Wang, Li
    Jiang, Hao
    Zheng, Qiong
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 3640 - 3658