Spectral inverse problem for q-deformed harmonic oscillator

被引:0
|
作者
P K Bera
J Datta
机构
[1] Dumkal College,Department of Physics
[2] Basantapur,undefined
来源
Pramana | 2006年 / 67卷
关键词
-Oscillator; supersymmetric WKB; wave functions; 03.65.Fd; 03.65.Ge; 11.30.Na;
D O I
暂无
中图分类号
学科分类号
摘要
The supersymmetric quantization condition is used to study the wave functions of SWKB equivalent q-deformed harmonic oscillator which are obtained by using only the knowledge of bound-state spectra of q-deformed harmonic oscillator. We have also studied the nonuniqueness of the obtained interactions by this spectral inverse method.
引用
收藏
页码:1023 / 1035
页数:12
相关论文
共 50 条
  • [41] ON Q-COHERENT STATE OF Q-DEFORMED OSCILLATOR
    YANG, YP
    YU, ZR
    MODERN PHYSICS LETTERS A, 1994, 9 (36) : 3367 - 3372
  • [42] On q-Coherent State of q-Deformed Oscillator
    Yang, Y. P.
    Yu, Z. R.
    Modern Physics Letter A, 1994, 9 (36):
  • [43] Interpolating statistics and q-deformed oscillator algebras
    Swamy, PN
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2006, 20 (06): : 697 - 713
  • [44] The thermodynamic properties of the q-deformed optomechanical oscillator
    Batouli, J.
    Rfifi, S.
    El Baz, M.
    Boulezhar, A.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2022, 19 (04)
  • [45] Q-DEFORMED OSCILLATOR ALGEBRA AS A QUANTUM GROUP
    YAN, H
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (22): : L1155 - L1160
  • [46] Improved q-deformed Scarf II oscillator
    Eyube, E. S.
    Nyam, G. G.
    Notani, P. P.
    PHYSICA SCRIPTA, 2021, 96 (12)
  • [47] QUANTUM PHASE AND A Q-DEFORMED QUANTUM OSCILLATOR
    ELLINAS, D
    PHYSICAL REVIEW A, 1992, 45 (05): : 3358 - 3361
  • [48] The characteristic equation of q-deformed bosonic oscillator
    Wu, N
    Ruan, TN
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1997, 28 (03) : 369 - 372
  • [49] The Characteristic Equation of q-Deformed Bosonic Oscillator
    Wu, N.
    Ruan, T.
    Communications in Theoretical Physics, 28 (03):
  • [50] A Q-DEFORMED HARMONIC-OSCILLATOR IN A FINITE-DIMENSIONAL HILBERT-SPACE
    KUANG, LM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (20): : L1079 - L1083