Porous medium flow with both a fractional potential pressure and fractional time derivative

被引:0
|
作者
Mark Allen
Luis Caffarelli
Alexis Vasseur
机构
[1] The University of Texas at Austin,Department of Mathematics
关键词
Caputo derivative; Marchaud derivative; Porous medium equation; Hölder continuity; Nonlocal diffusion; 35K55; 26A33; 35D10;
D O I
暂无
中图分类号
学科分类号
摘要
The authors study a porous medium equation with a right-hand side. The operator has nonlocal diffusion effects given by an inverse fractional Laplacian operator. The derivative in time is also fractional and is of Caputo-type, which takes into account “memory”. The precise model is Dtαu−div(u−(−Δ)−σu)=f,0<σ<12.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_t^\alpha u - div\left( {u - {{\left( { - \Delta } \right)}^{ - \sigma }}u} \right) = f,0 < \sigma < \frac{1}{2}.$$\end{document} This paper poses the problem over {t ∈ R+, x ∈ Rn} with nonnegative initial data u(0, x) ≥ 0 as well as the right-hand side f ≥ 0. The existence for weak solutions when f, u(0, x) have exponential decay at infinity is proved. The main result is Hölder continuity for such weak solutions.
引用
收藏
页码:45 / 82
页数:37
相关论文
共 50 条
  • [22] Non-local porous media equations with fractional time derivative
    Daus, Esther
    Gualdani, Maria Pia
    Xu, Jingjing
    Zamponi, Nicola
    Zhang, Xinyu
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 211
  • [23] Finite and infinite speed of propagation for porous medium equations with fractional pressure
    Stan, Diana
    del Teso, Felix
    Luis Vazquez, Juan
    COMPTES RENDUS MATHEMATIQUE, 2014, 352 (02) : 123 - 128
  • [24] REGULARITY OF SOLUTIONS OF THE FRACTIONAL POROUS MEDIUM FLOW WITH EXPONENT 1/2
    Caffarelli, L.
    Vazquez, J. L.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2016, 27 (03) : 437 - 460
  • [25] A General Fractional Porous Medium Equation
    de Pablo, Arturo
    Quiros, Fernando
    Rodriguez, Ana
    Luis Vazquez, Juan
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2012, 65 (09) : 1242 - 1284
  • [26] Solution of the Fractional Form of Unsteady Squeezing Flow through Porous Medium
    Hemeda, A. A.
    Eladdad, E. E.
    Lairje, I. A.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [27] MHD Peristaltic Flow of Fractional Jeffrey Model through Porous Medium
    Guo, Xiaoyi
    Zhou, Jianwei
    Xi, Huantian
    Jiang, Ziwu
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2018, 2018
  • [28] Analysis of magnetohydrodynamic flow of a fractional viscous fluid through a porous medium
    Ul Haq, Sami
    Khan, Muhammad Atif
    Shah, Nehad Ali
    CHINESE JOURNAL OF PHYSICS, 2018, 56 (01) : 261 - 269
  • [29] Time fractional Schrodinger equation with a limit based fractional derivative
    Zu, Chuanjin
    Yu, Xiangyang
    CHAOS SOLITONS & FRACTALS, 2022, 157
  • [30] Analytical solution for fractional derivative gas-flow equation in porous media
    El Amin, Mohamed F.
    Radwan, Ahmed G.
    Sun, Shuyu
    RESULTS IN PHYSICS, 2017, 7 : 2432 - 2438