Finite gradient elasticity and plasticity: a constitutive mechanical framework

被引:0
|
作者
Albrecht Bertram
机构
[1] Otto-von-Guericke Universität Magdeburg,
来源
关键词
Gradient plasticity; Gradient elasticity; Finite deformations;
D O I
暂无
中图分类号
学科分类号
摘要
Following a suggestion by Forest and Sievert (Acta Mech 160:71–111, 2003), a constitutive frame for a general gradient elastoplasticity for finite deformations is established. The basic assumptions are the principle of Euclidean invariance and the isomorphy of the elastic ranges. Both the elastic and the plastic laws include the first and the second deformation gradient. The starting point is an objective expression for the stress power.
引用
收藏
页码:1039 / 1058
页数:19
相关论文
共 50 条
  • [31] A covariance condition in finite plasticity and related constitutive results
    Lu, J
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2006, 57 (02): : 313 - 323
  • [34] A finite deformation second gradient theory of plasticity
    Chambon, R
    Caillerie, D
    Tamagnini, C
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE, 2001, 329 (11): : 797 - 802
  • [35] Gradient dependent plasticity and the finite difference method
    Alehossein, H
    Korinets, A
    BIFURCATION AND LOCALISATION THEORY IN GEOMECHANICS, 2001, : 117 - 124
  • [36] Ogden-type constitutive equations in finite elasticity of elastomers
    A. D. Drozdov
    M. Gottlieb
    Acta Mechanica, 2006, 183 : 231 - 252
  • [37] A finite deformation theory of strain gradient plasticity
    Hwang, KC
    Jiang, H
    Huang, Y
    Gao, H
    Hu, N
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2002, 50 (01) : 81 - 99
  • [38] Strain-gradient elasticity and gradient-dependent plasticity with hierarchical refinement of NURBS
    Kolo, Isa
    Chen, Lin
    de Borst, Rene
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2019, 163 : 31 - 43
  • [39] Ogden-type constitutive equations in finite elasticity of elastomers
    Drozdov, A. D.
    Gottlieb, M.
    ACTA MECHANICA, 2006, 183 (3-4) : 231 - 252
  • [40] A reformulation of constitutive relations in the strain gradient elasticity theory for isotropic materials
    Zhou, Shenjie
    Li, Anqing
    Wang, Binglei
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2016, 80 : 28 - 37