On local existence, uniqueness and blow-up of solutions for the generalized MHD equations in Lei–Lin spaces

被引:0
|
作者
Wilberclay G. Melo
Cilon Perusato
Natã Firmino Rocha
机构
[1] Universidade Federal de Sergipe,Departamento de Matemática
[2] Universidade Federal de Pernambuco,Departamento de Matemática
[3] Universidade Federal de Minas Gerais,Departamento de Matemática
关键词
GMHD equations; Local existence and uniqueness of solutions; Limit superior; Lei–Lin spaces; 35B44; 35Q30; 76D03; 76D05; 76W05;
D O I
暂无
中图分类号
学科分类号
摘要
This paper establishes the existence and uniqueness, and also presents a specific blow-up criterion, for solutions of the generalized magnetohydrodynamics (GMHD) equations in Lei–Lin spaces Xs(R3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {X}^s(\mathbb {R}^3)$$\end{document}, by considering appropriate values for s. More precisely, if it is assumed that the initial data (u0,b0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(u_0,b_0)$$\end{document} belong to Xs(R3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {X}^{s}(\mathbb {R}^3)$$\end{document}, we demonstrate that there exists an instant of time T>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T>0$$\end{document} such that (u,b)∈[CT(Xs(R3))∩LT1(Xs+2α(R3))]×[CT(Xs(R3))∩LT1(Xs+2β(R3))]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(u,b)\in [C_{T}(\mathcal {X}^s(\mathbb {R}^3))\cap L^1_{T}({\mathcal {X}}^{s+2\alpha }(\mathbb {R}^3))]\times [C_{T}(\mathcal {X}^s(\mathbb {R}^3))\cap L^1_{T}({\mathcal {X}}^{s+2\beta }(\mathbb {R}^3))]$$\end{document}, provided that α,β∈(12,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha ,\beta \in (\frac{1}{2},1]$$\end{document} and max{α(1-2β)β,β(1-2α)α}≤s<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max \big \{\frac{\alpha (1-2\beta )}{\beta },\frac{\beta (1-2\alpha )}{\alpha }\big \} \le s<0$$\end{document} (here α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} and β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} are related to the fractional Laplacian that appears in the GMHD system). Furthermore, we prove that if T∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T^*$$\end{document} (finite) is the first blow-up instant of the solution (u, b)(x, t), then limt↗T∗‖(u,b)(t)‖Xs(R3)=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \lim _{t\nearrow T^*}\Vert (u,b)(t)\Vert _{\mathcal {X}^s(\mathbb {R}^3)}=\infty $$\end{document}, whether max{1-2α,1-2β,α(1-2β)β,β(1-2α)α}<s<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max \big \{1-2\alpha ,1-2\beta ,\frac{\alpha (1-2\beta )}{\beta },\frac{\beta (1-2\alpha )}{\alpha }\big \}< s<0$$\end{document} and α,β∈(12,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha ,\beta \in (\frac{1}{2},1]$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] Existence, uniqueness and blow-up of solutions for the 3D Navier–Stokes equations in homogeneous Sobolev–Gevrey spaces
    Braz e Silva, P.
    Melo, W.G.
    Rocha, N.F.
    Computational and Applied Mathematics, 2020, 39 (02)
  • [22] On the local existence and blow-up for generalized SQG patches
    Francisco Gancedo
    Neel Patel
    Annals of PDE, 2021, 7
  • [23] On the local existence and blow-up for generalized SQG patches
    Gancedo, Francisco
    Patel, Neel
    ANNALS OF PDE, 2021, 7 (01)
  • [24] Blow-up criteria for smooth solutions to the generalized 3D MHD equations
    Liping Hu
    Yinxia Wang
    Boundary Value Problems, 2013
  • [25] Local existence and blow-up criterion of Holder continuous solutions of the Boussinesq equations
    Chae, D
    Kim, SK
    Nam, HS
    NAGOYA MATHEMATICAL JOURNAL, 1999, 155 : 55 - 80
  • [26] Blow-up criteria for smooth solutions to the generalized 3D MHD equations
    Hu, Liping
    Wang, Yinxia
    BOUNDARY VALUE PROBLEMS, 2013,
  • [27] Local existence and blow-up criterion for the Boussinesq equations
    Chae, D
    Nam, HS
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1997, 127 : 935 - 946
  • [28] Well-Posedness, Blow-up Criteria and Stability for Solutions of the Generalized MHD Equations in Sobolev-Gevrey Spaces
    Robert H. Guterres
    Wilberclay G. Melo
    Natã F. Rocha
    Thyago S. R. Santos
    Acta Applicandae Mathematicae, 2021, 176
  • [29] Well-Posedness, Blow-up Criteria and Stability for Solutions of the Generalized MHD Equations in Sobolev-Gevrey Spaces
    Guterres, Robert H.
    Melo, Wilberclay G.
    Rocha, Nata F.
    Santos, Thyago S. R.
    ACTA APPLICANDAE MATHEMATICAE, 2021, 176 (01)
  • [30] Local existence and blow-up criterion for the Euler equations in Besov spaces of weak type
    Takada, Ryo
    JOURNAL OF EVOLUTION EQUATIONS, 2008, 8 (04) : 693 - 725