Existence of a weak solution and blow-up of strong solutions for a two-component Fornberg–Whitham system

被引:0
|
作者
Zhihao Bai
Yang Wang
Long Wei
机构
[1] Hangzhou Dianzi University,Department of Mathematics
来源
关键词
Fornberg–Whitham system; Weak solution; Blow-up; Pseudo-parabolic regularization; 35A01; 35D30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the existence of a weak solution and blow-up of strong solutions to a two-component Fornberg–Whitham system. Due to the absence of some useful conservation laws, we establish the existence of a weak solution to the system in lower order Sobolev spaces Hs×Hs-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{s}\times H^{s-1}$$\end{document} (s∈(1,3/2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\in (1,3/2]$$\end{document}) via a modified pseudo-parabolic regularization method. And then, a blow-up scenario for strong solutions to this system is shown. By the analysis of Riccati-type inequalities recently, we present some sufficient conditions on the initial data that lead to the blow-up for corresponding strong solutions to the system.
引用
收藏
相关论文
共 50 条
  • [21] SELF-SIMILAR SOLUTIONS AND BLOW-UP PHENOMENA FOR A TWO-COMPONENT SHALLOW WATER SYSTEM
    周寿明
    穆春来
    王良晨
    [J]. Acta Mathematica Scientia, 2013, 33 (03) : 821 - 829
  • [22] SELF-SIMILAR SOLUTIONS AND BLOW-UP PHENOMENA FOR A TWO-COMPONENT SHALLOW WATER SYSTEM
    Shouming Zhou
    Chunlai Mu
    Liangchen Wang
    [J]. ACTA MATHEMATICA SCIENTIA, 2013, 33 (03) : 821 - 829
  • [23] Blow-up analysis for a periodic two-component μ-Hunter–Saxton system
    Yunxi Guo
    Tingjian Xiong
    [J]. Journal of Inequalities and Applications, 2018
  • [24] Blow-up criteria for a two-component nonlinear dispersive wave system
    Novruzov, Emil
    Bayrak, Vural
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 282 (12)
  • [25] Global Existence and Blow-Up for a Weakly Dissipative Modified Two-Component Camassa-Holm System
    Han, Xuanxuan
    Wang, Tingting
    Lu, Yibin
    [J]. ADVANCES IN MATHEMATICAL PHYSICS, 2022, 2022
  • [26] Blow-up phenomena and global existence for the periodic two-component Dullin-Gottwald-Holm system
    Liu, Jingjing
    Zhang, Dequan
    [J]. BOUNDARY VALUE PROBLEMS, 2013,
  • [27] Blow-up phenomena and global existence for the periodic two-component Dullin-Gottwald-Holm system
    Jingjing Liu
    Dequan Zhang
    [J]. Boundary Value Problems, 2013
  • [28] Blow-up Phenomena and Persistence Properties of Solutions to the Two-Component DGH Equation
    Zhai, Panpan
    Guo, Zhengguang
    Wang, Weiming
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [29] BLOW-UP FOR TWO-COMPONENT CAMASSA-HOLM EQUATION WITH GENERALIZED WEAK DISSIPATION
    Chen, Wenxia
    Liu, Jingyi
    Ding, Danping
    Tian, Lixin
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (07) : 3769 - 3784
  • [30] Non-uniform dependence of the data-to-solution map for the two-component Fornberg-Whitham system
    Yu, Yanghai
    Li, Jinlu
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2023, 202 (01) : 59 - 76