Strongly singular nonhomogeneous eigenvalue problems

被引:0
|
作者
Nikolaos S. Papageorgiou
Vicenţiu D. Rădulescu
Lixi Wen
机构
[1] National Technical University,Department of Mathematics
[2] AGH University of Science and Technology,Faculty of Applied Mathematics
[3] University of Craiova,Department of Mathematics
[4] China-Romania Research Center in Applied Mathematics,School of Mathematics and Statistics, HNP
[5] Central South University,LAMA
关键词
Purely singular problem; Regularization; Nonlinear maximum principle; Multiple positive solutions; Superlinear perturbation; 35J20; 35J75;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a nonlinear Dirichlet problem driven by the sum of a p-Laplacian and of a q-Laplacian, 1<p<q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p<q$$\end{document}, (a (p, q)-equation). The reaction is parametric (eigenvalue problem) and exhibits the competing effects of a strongly singular term and of (p-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p-1)$$\end{document}-superlinear Carathéodory perturbation. We show that when the parameter (eigenvalue) is small, then the problem has at least two positive bounded solutions which are bounded away from zero on compact sets.
引用
下载
收藏
相关论文
共 50 条