Strongly singular nonhomogeneous eigenvalue problems

被引:0
|
作者
Nikolaos S. Papageorgiou
Vicenţiu D. Rădulescu
Lixi Wen
机构
[1] National Technical University,Department of Mathematics
[2] AGH University of Science and Technology,Faculty of Applied Mathematics
[3] University of Craiova,Department of Mathematics
[4] China-Romania Research Center in Applied Mathematics,School of Mathematics and Statistics, HNP
[5] Central South University,LAMA
关键词
Purely singular problem; Regularization; Nonlinear maximum principle; Multiple positive solutions; Superlinear perturbation; 35J20; 35J75;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a nonlinear Dirichlet problem driven by the sum of a p-Laplacian and of a q-Laplacian, 1<p<q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p<q$$\end{document}, (a (p, q)-equation). The reaction is parametric (eigenvalue problem) and exhibits the competing effects of a strongly singular term and of (p-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p-1)$$\end{document}-superlinear Carathéodory perturbation. We show that when the parameter (eigenvalue) is small, then the problem has at least two positive bounded solutions which are bounded away from zero on compact sets.
引用
下载
收藏
相关论文
共 50 条
  • [1] Strongly singular nonhomogeneous eigenvalue problems
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Wen, Lixi
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2023, 117 (01)
  • [2] Discontinuous perturbations of nonhomogeneous strongly-singular Kirchhoff problems
    Vicenţiu D. Rădulescu
    Carlos Alberto Santos
    Lais Santos
    Marcos L. M. Carvalho
    Nonlinear Differential Equations and Applications NoDEA, 2021, 28
  • [3] Discontinuous perturbations of nonhomogeneous strongly-singular Kirchhoff problems
    Radulescu, Vicentiu D.
    Santos, Carlos Alberto
    Santos, Lais
    Carvalho, Marcos L. M.
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2021, 28 (06):
  • [4] Nonlinear nonhomogeneous singular problems
    Nikolaos S. Papageorgiou
    Vicenţiu D. Rădulescu
    Dušan D. Repovš
    Calculus of Variations and Partial Differential Equations, 2020, 59
  • [5] Nonlinear nonhomogeneous singular problems
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (01)
  • [6] Nonlinear nonhomogeneous Neumann eigenvalue problems
    Candito, Pasquale
    Livrea, Roberto
    Papageorgiou, Nikolaos S.
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2015, (46) : 1 - 24
  • [7] STRONGLY NONLINEAR EIGENVALUE PROBLEMS
    MUSTONEN, V
    QUARTERLY JOURNAL OF MATHEMATICS, 1976, 27 (108): : 489 - 509
  • [8] EIGENVALUE PROBLEMS FOR SINGULAR ODES
    O'Regan, Donal
    Orpel, Aleksandra
    GLASGOW MATHEMATICAL JOURNAL, 2011, 53 : 301 - 312
  • [9] SINGULAR PERTURBATIONS OF EIGENVALUE PROBLEMS
    HARRIS, WA
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1961, 7 (03) : 224 - 241
  • [10] Nonlinear eigenvalue problems for nonhomogeneous Leray–Lions operators
    Mohamed Abdelwahed
    Nejmeddine Chorfi
    Boundary Value Problems, 2020