Reconstruction of shoulder MRI using deep learning and compressed sensing: a validation study on healthy volunteers

被引:0
|
作者
Thomas Dratsch
Florian Siedek
Charlotte Zäske
Kristina Sonnabend
Philip Rauen
Robert Terzis
Robert Hahnfeldt
David Maintz
Thorsten Persigehl
Grischa Bratke
Andra Iuga
机构
[1] University of Cologne,Department of Diagnostic and Interventional Radiology
[2] Faculty of Medicine and University Hospital Cologne,undefined
[3] Philips GmbH Market DACH,undefined
[4] Hamburg,undefined
关键词
Artifacts; Artificial intelligence; Deep learning; Magnetic resonance imaging; Shoulder joint;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] A Deep Ensemble Network for Compressed Sensing MRI
    Wu, Huafeng
    Wu, Yawen
    Sun, Liyan
    Cai, Congbo
    Huang, Yue
    Ding, Xinghao
    NEURAL INFORMATION PROCESSING (ICONIP 2018), PT I, 2018, 11301 : 162 - 171
  • [22] Research on Active Obstacle Avoidance in Seismic Acquisition Using Compressed Sensing and Deep Learning Reconstruction Technology
    Jiang, Yongyong
    Chen, Hao
    Huang, Peng
    Guo, Lirong
    Liu, Yang
    IEEE ACCESS, 2024, 12 : 177634 - 177646
  • [23] Fast bilateral complementary network for deep learning compressed sensing image reconstruction
    Guo Yuan
    Jiang Jinlin
    Chen Wei
    IET IMAGE PROCESSING, 2022, 16 (13) : 3485 - 3498
  • [24] Super-resolution reconstruction based on compressed sensing and deep learning model
    Sun, Dan
    Zhang, Tianyang
    Chen, Lisha
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON COMMUNICATION AND ELECTRONICS SYSTEMS (ICCES), 2016, : 1060 - 1064
  • [25] Acceleration of knee magnetic resonance imaging using a combination of compressed sensing and commercially available deep learning reconstruction: a preliminary study
    Akai, Hiroyuki
    Yasaka, Koichiro
    Sugawara, Haruto
    Tajima, Taku
    Kamitani, Masaru
    Furuta, Toshihiro
    Akahane, Masaaki
    Yoshioka, Naoki
    Ohtomo, Kuni
    Abe, Osamu
    Kiryu, Shigeru
    BMC MEDICAL IMAGING, 2023, 23 (01)
  • [26] Acceleration of knee magnetic resonance imaging using a combination of compressed sensing and commercially available deep learning reconstruction: a preliminary study
    Hiroyuki Akai
    Koichiro Yasaka
    Haruto Sugawara
    Taku Tajima
    Masaru Kamitani
    Toshihiro Furuta
    Masaaki Akahane
    Naoki Yoshioka
    Kuni Ohtomo
    Osamu Abe
    Shigeru Kiryu
    BMC Medical Imaging, 23
  • [27] MR imaging for shoulder diseases: Effect of compressed sensing and deep learning reconstruction on examination time and imaging quality compared with that of parallel imaging
    Obama, Yuki
    Ohno, Yoshiharu
    Yamamoto, Kaori
    Ikedo, Masato
    Yui, Masao
    Hanamatsu, Satomu
    Ueda, Takahiro
    Ikeda, Hirotaka
    Murayama, Kazuhiro
    Toyama, Hiroshi
    MAGNETIC RESONANCE IMAGING, 2022, 94 : 56 - 63
  • [28] Dynamic MRI reconstruction exploiting blind compressed sensing combined transform learning regularization
    He, Ning
    Wang, Ruolin
    Wang, Yixue
    NEUROCOMPUTING, 2020, 392 (392) : 160 - 167
  • [29] Learning Space-Time Dictionaries for Blind Compressed Sensing Dynamic MRI Reconstruction
    Majumdar, Angshul
    Ward, Rabab
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 4550 - 4554
  • [30] Compressed Sensing MRI Reconstruction Using a Generative Adversarial Network With a Cyclic Loss
    Tran Minh Quan
    Thanh Nguyen-Duc
    Jeong, Won-Ki
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (06) : 1488 - 1497