Reconstruction of shoulder MRI using deep learning and compressed sensing: a validation study on healthy volunteers

被引:0
|
作者
Thomas Dratsch
Florian Siedek
Charlotte Zäske
Kristina Sonnabend
Philip Rauen
Robert Terzis
Robert Hahnfeldt
David Maintz
Thorsten Persigehl
Grischa Bratke
Andra Iuga
机构
[1] University of Cologne,Department of Diagnostic and Interventional Radiology
[2] Faculty of Medicine and University Hospital Cologne,undefined
[3] Philips GmbH Market DACH,undefined
[4] Hamburg,undefined
关键词
Artifacts; Artificial intelligence; Deep learning; Magnetic resonance imaging; Shoulder joint;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Reconstruction of shoulder MRI using deep learning and compressed sensing: a validation study on healthy volunteers
    Dratsch, Thomas
    Siedek, Florian
    Zaeske, Charlotte
    Sonnabend, Kristina
    Rauen, Philip
    Terzis, Robert
    Hahnfeldt, Robert
    Maintz, David
    Persigehl, Thorsten
    Bratke, Grischa
    Iuga, Andra
    EUROPEAN RADIOLOGY EXPERIMENTAL, 2023, 7 (01)
  • [2] Reconstruction of 3D knee MRI using deep learning and compressed sensing: a validation study on healthy volunteers
    Dratsch, Thomas
    Zaeske, Charlotte
    Siedek, Florian
    Rauen, Philip
    Hokamp, Nils Grosse
    Sonnabend, Kristina
    Maintz, David
    Bratke, Grischa
    Iuga, Andra
    EUROPEAN RADIOLOGY EXPERIMENTAL, 2024, 8 (01)
  • [3] Five-minute knee MRI: An AI-based super resolution reconstruction approach for compressed sensing. A validation study on healthy volunteers
    Terzis, Robert
    Dratsch, Thomas
    Hahnfeldt, Robert
    Basten, Lajos
    Rauen, Philip
    Sonnabend, Kristina
    Weiss, Kilian
    Reimer, Robert
    Maintz, David
    Iuga, Andra-Iza
    Bratke, Grischa
    EUROPEAN JOURNAL OF RADIOLOGY, 2024, 175
  • [4] DEEP RESIDUAL LEARNING FOR COMPRESSED SENSING MRI
    Lee, Dongwook
    Yoo, Jaejun
    Ye, Jong Chul
    2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 15 - 18
  • [5] Transferring Deep Gaussian Denoiser for Compressed Sensing MRI Reconstruction
    Xie, Zhonghua
    Liu, Lingjun
    IEEE MULTIMEDIA, 2022, 29 (04) : 5 - 13
  • [6] Carotid blood flow measurement accelerated by compressed sensing: Validation in healthy volunteers
    Tao, Yuehui
    Rilling, Gabriel
    Davies, Mike
    Marshall, Ian
    MAGNETIC RESONANCE IMAGING, 2013, 31 (09) : 1485 - 1491
  • [7] Efficacy of compressed sensing and deep learning reconstruction for adult female pelvic MRI at 1.5 T
    Ueda, Takahiro
    Yamamoto, Kaori
    Yazawa, Natsuka
    Tozawa, Ikki
    Ikedo, Masato
    Yui, Masao
    Nagata, Hiroyuki
    Nomura, Masahiko
    Ozawa, Yoshiyuki
    Ohno, Yoshiharu
    EUROPEAN RADIOLOGY EXPERIMENTAL, 2024, 8 (01)
  • [8] Compressed Remote Sensing by Using Deep Learning
    Mirrashid, Alireza
    Beheshti, Ali Asghar
    2018 9TH INTERNATIONAL SYMPOSIUM ON TELECOMMUNICATIONS (IST), 2018, : 549 - 552
  • [9] Adaptive deep learning network for image reconstruction of compressed sensing
    Nan, Ruili
    Sun, Guiling
    Zheng, Bowen
    Wang, Lin
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (02) : 1463 - 1475
  • [10] Adaptive deep learning network for image reconstruction of compressed sensing
    Ruili Nan
    Guiling Sun
    Bowen Zheng
    Lin Wang
    Signal, Image and Video Processing, 2024, 18 : 1463 - 1475