Scaled Correlations of Critical Points of Random Sections on Riemann Surfaces

被引:0
|
作者
John Baber
机构
[1] University of Connecticut,Department of Mathematics
来源
关键词
Several complex variables; Random sections;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we prove that as N goes to infinity, the scaling limit of the correlation between critical points z1 and z2 of random holomorphic sections of the N-th power of a positive line bundle over a compact Riemann surface tends to 2/(3π2) for small \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{N}|z_{1}-\nobreak z_{2}|$\end{document}. The scaling limit is directly calculated using a general form of the Kac-Rice formula and formulas and theorems of Pavel Bleher, Bernard Shiffman, and Steve Zelditch.
引用
收藏
页码:250 / 279
页数:29
相关论文
共 50 条