Validation of algorithms to identify colorectal cancer patients from administrative claims data of a Japanese hospital

被引:0
|
作者
Takahiro Hirano
Makiko Negishi
Yoshiki Kuwatsuru
Masafumi Arai
Ryozo Wakabayashi
Naoko Saito
Ryohei Kuwatsuru
机构
[1] Clinical Study Support,Real
[2] Inc.,World Evidence and Data Assessment (READS), Graduate School of Medicine
[3] Juntendo University,Department of Radiology, School of Medicine
[4] Shin Nippon Biomedical Laboratories,undefined
[5] Ltd.,undefined
[6] Juntendo University,undefined
关键词
Colorectal cancer; Administrative claims data; Validation; Diagnostic codes; Japan; Positive predictive value;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Development and validation of a machine learning algorithm to identify anaphylaxis in US administrative claims data
    Beachler, Daniel C.
    Taylor, Devon H.
    Anthony, Mary S.
    Yin, Ruihua
    Li, Ling
    Saltus, Catherine W.
    Li, Lin
    Shaunik, Alka
    Walsh, Kathleen E.
    Lanes, Stephan
    Rothman, Kenneth J.
    Johannes, Catherine
    Aroda, Vanita
    Carr, Warner
    Goldberg, Pinkus
    Accardi, Andrew
    O'Shura, J. Shane
    Sharma, Kristen
    Juhaeri, Juhaeri
    Wu, Chuntao
    [J]. PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2020, 29 : 602 - 602
  • [32] Validation in Alberta of an administrative data algorithm to identify cancer recurrence
    Cairncross, Z. F.
    Nelson, G.
    Shack, L.
    Metcalfe, A.
    [J]. CURRENT ONCOLOGY, 2020, 27 (03) : E343 - E346
  • [33] Algorithms to Identify Pancreatic Cancer and Thyroid Neoplasm from Health Insurance Claims Data
    Liang, Caihua
    Turnbull, Bruce R.
    Skerry, Kathleen E.
    Appenteng, Kwame
    Motsko, Stephen P.
    Dore, David D.
    [J]. PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2013, 22 : 235 - 235
  • [34] A predictive model to identify Parkinson disease from administrative claims data
    Nielsen, Susan Searles
    Warden, Mark N.
    Camacho-Soto, Alejandra
    Willis, Allison W.
    Wright, Brenton A.
    Racette, Brad A.
    [J]. NEUROLOGY, 2017, 89 (14) : 1448 - 1456
  • [35] Machine learning to identify chronic cough from administrative claims data
    Bali, Vishal
    Turzhitsky, Vladimir
    Schelfhout, Jonathan
    Paudel, Misti
    Hulbert, Erin
    Peterson-Brandt, Jesse
    Hertzberg, Jeffrey
    Kelly, Neal R.
    Patel, Raja H.
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01)
  • [36] An algorithm to identify patients with refractory chronic cough from administrative claims data: a feasibility study
    van Boemmel-Wegmann, S.
    Pires, P. Vieira
    Herrera, R.
    Vora, P.
    Hajizadeh, N.
    [J]. EUROPEAN RESPIRATORY JOURNAL, 2022, 60
  • [37] Machine learning to identify chronic cough from administrative claims data
    Vishal Bali
    Vladimir Turzhitsky
    Jonathan Schelfhout
    Misti Paudel
    Erin Hulbert
    Jesse Peterson-Brandt
    Jeffrey Hertzberg
    Neal R. Kelly
    Raja H. Patel
    [J]. Scientific Reports, 14
  • [38] Development Of Administrative-Claims Based Algorithms To Identify Patients With Pulmonary Arterial Hypertension
    Papani, R.
    Sharma, G.
    Chan, W.
    Kuo, Y-F
    Agarwal, A.
    Duarte, A.
    [J]. AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2017, 195
  • [39] Identifying Metastatic Breast (BC), Lung (LC), or Colorectal Cancer (CRC) in Administrative Claims Data: An Algorithm Validation
    Engel-Nitz, Nicole M.
    LWhyte, Joanna
    Teitelbaum, April
    Rey, Gabriel Gomez
    Kallich, Joel
    [J]. PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2011, 20 : S165 - S165
  • [40] Leveraging Linkage of Cohort Studies With Administrative Claims Data to Identify Individuals With Cancer
    Bronson, Mackenzie R.
    Kapadia, Nirav S.
    Austin, Andrea M.
    Wang, Qianfei
    Feskanich, Diane
    Bynum, Julie P. W.
    Grodstein, Francine
    Tosteson, Anna N. A.
    [J]. MEDICAL CARE, 2018, 56 (12) : e83 - e89