Time-frequency concentration and localization operators associated with the directional short-time fourier transform

被引:0
|
作者
Saifallah Ghobber
Hatem Mejjaoli
机构
[1] King Faisal University,Department of Mathematics and Statistics, College of Science
[2] Taibah University,Department of Mathematics, College of Sciences
关键词
Directional short-time Fourier transform; Quantitative uncertainty principles; Generalized multipliers; Generalized two-wavelet multipliers; Landau-Pollak-Slepian operator; Primary 47G10;; Secondary 42B10; 47G30;
D O I
暂无
中图分类号
学科分类号
摘要
In the present article, we prove new quantitative uncertainty principles for the directional short-time Fourier transform. Next, we introduce the notion of the generalized wavelet multipliers associated with the inverse of the directional short-time Fourier transform. We study the boundedness, Schatten class properties of these operator and give a trace formula. In particular we prove that the generalized Landau-Pollak-Slepian operator is a generalized wavelet multiplier. Finally, we investigate the boundedness and compactness of the generalized wavelet multipliers in the Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p}$$\end{document}-spaces.
引用
收藏
相关论文
共 50 条