Deep learning with invariant feature based species classification in underwater environments

被引:0
|
作者
Maninder Kaur
Sandip Vijay
机构
[1] Uttarakhand Technical University Uttrakhand,
[2] Tula’s Institute,undefined
[3] Uttarakhand,undefined
来源
关键词
Underwater species; Image enhancement; Segmentation; Surf; Genetic algorithm; Deep learning; Convolutional Neural Network;
D O I
暂无
中图分类号
学科分类号
摘要
Researchers are paying more attention these days to research on the detection and classification of underwater species from images. The main goal of the researchers is to make a pre-processing algorithm that uses an enhancement mechanism to find the exact region of species. It is crucial for marine researchers and scientists to estimate the region of species for classification on a regular basis, but this is a challenging task due to uncleanly captured images. The main causes of such a problem are variation in light of the underwater environment, species concealment, irregular backgrounds, low resolution, and indirect variations between some species patterns. To address these issues, we propose an Invariant Feature-based Species Classification (IFSC) model that employs a pattern-net-based Convolutional Neural Network (CNN) as a deep learning model in an underwater environment. We focused on two types of species: octopus and crabs, each with eight subclasses, and the dataset used was self-collected from the Poppe Image Marine Iconography. To achieve maximum classification accuracy, this study focuses on appropriate segmentation and invariant feature extraction. Following the extraction of invariant features, the concept of a genetic algorithm (GA) is used to select only the most relevant features based on their class. The invariant feature extraction approach known as the Speed Up Robust Feature (SURF) descriptor performed well, and the model achieved an overall accuracy of 95.04%, which is higher than the existing work of 1.71%. As far as we know, the results we got are the best ones that have been published on the collected dataset in the past few years, which shows that our strategy works better than others.
引用
收藏
页码:19587 / 19608
页数:21
相关论文
共 50 条
  • [21] Chinese Text Feature Extraction and Classification Based on Deep Learning
    Wang, Ruishuang
    Li, Zhao
    Cao, Jian
    Chen, Tong
    PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND APPLICATION ENGINEERING (CSAE2019), 2019,
  • [22] Deep Learning based Framework for Underwater Acoustic Signal Recognition and Classification
    Wu, Hao
    Song, Qingzeng
    Jin, Guanghao
    PROCEEDINGS OF 2018 THE 2ND INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE (CSAI 2018) / 2018 THE 10TH INTERNATIONAL CONFERENCE ON INFORMATION AND MULTIMEDIA TECHNOLOGY (ICIMT 2018), 2018, : 385 - 388
  • [23] Deep Learning Based on Striation Images for Underwater and Surface Target Classification
    Zho, Xingyue
    Yang, Kunde
    Duan, Rui
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (09) : 1378 - 1382
  • [24] Modulation Classification of Underwater Acoustic Communication Signals Based on Deep Learning
    Ding Li-Da
    Wang Shi-Lian
    Zhang Wei
    2018 OCEANS - MTS/IEEE KOBE TECHNO-OCEANS (OTO), 2018,
  • [25] UNDERWATER TARGET FEATURE EXTRACTION AND CLASSIFICATION BASED ON GAMMATONE FILTER AND MACHINE LEARNING
    Zhang, Wen
    Wu, Yanqun
    Wang, Dezhi
    Wang, Yongxian
    Wang, Yibo
    Zhang, Lilun
    PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR), 2018, : 42 - 47
  • [26] Underwater target classification using deep learning
    Li, Chen
    Huang, Zhaoqiong
    Xu, Ji
    Yan, Yonghong
    OCEANS 2018 MTS/IEEE CHARLESTON, 2018,
  • [27] Feature extraction of underwater target acoustic signals based on deep manifold learning
    Zhou, Yu
    Wang, Jin
    Teng, Fei
    Pan, Bisheng
    Wang, Yourui
    Lei, Yingke
    Zhendong yu Chongji/Journal of Vibration and Shock, 2024, 43 (09): : 50 - 59
  • [28] Real-time underwater object detection technology for complex underwater environments based on deep learning
    Zhou, Hui
    Kong, Meiwei
    Yuan, Hexiang
    Pan, Yanyan
    Wang, Xinru
    Chen, Rong
    Lu, Weiheng
    Wang, Ruizhi
    Yang, Qunhui
    ECOLOGICAL INFORMATICS, 2024, 82
  • [29] Fish Detection in Underwater Environments Using Deep Learning
    Patro, K. Suresh Kumar
    Yadav, Vinod Kumar
    Bharti, V. S.
    Sharma, Arun
    Sharma, Arpita
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2023, 46 (05): : 407 - 412
  • [30] Fish Detection in Underwater Environments Using Deep Learning
    K. Suresh Kumar Patro
    Vinod Kumar Yadav
    V. S. Bharti
    Arun Sharma
    Arpita Sharma
    National Academy Science Letters, 2023, 46 : 407 - 412