An anatomy of Arctic sea ice forecast biases in the seasonal prediction system with EC-Earth

被引:0
|
作者
Rubén Cruz-García
Pablo Ortega
Virginie Guemas
Juan C. Acosta Navarro
François Massonnet
Francisco J. Doblas-Reyes
机构
[1] Barcelona Supercomputing Center,
[2] Météo-France,undefined
[3] CNRM,undefined
[4] CNRS,undefined
[5] Groupe de Meteorologie Grande Echelle et Climat,undefined
[6] Université catholique de Louvain,undefined
[7] Georges Lemaître Centre for Earth and Climate Research,undefined
[8] Earth and Life Institute,undefined
来源
Climate Dynamics | 2021年 / 56卷
关键词
Arctic; Sea ice; Bias; Forecast; Shock; Initialization;
D O I
暂无
中图分类号
学科分类号
摘要
The quality of initial conditions (ICs) in climate predictions controls the level of skill. Both the use of the latest high-quality observations and of the most efficient assimilation method are of paramount importance. Technical challenges make it frequent to assimilate observational information independently in the various model components. Inconsistencies between the ICs obtained for the different model components can cause initialization shocks. In this study, we identify and quantify the contribution of the ICs inconsistency relative to the model inherent bias (in which the Arctic is generally too warm) to the development of sea ice concentration forecast biases in a seasonal prediction system with the EC-Earth general circulation model. We estimate that the ICs inconsistency dominates the development of forecast biases for as long as the first 24 (19) days of the forecasts initialized in May (November), while the development of model inherent bias dominates afterwards. The effect of ICs inconsistency is stronger in the Greenland Sea, in particular in November, and mostly associated to a mismatch between the sea ice and ocean ICs. In both May and November, the ICs inconsistency between the ocean and sea ice leads to sea ice melting, but it happens in November (May) in a context of sea ice expansion (shrinking). The ICs inconsistency tend to postpone (accelerate) the November (May) sea ice freezing (melting). Our findings suggest that the ICs inconsistency might have a larger impact than previously suspected. Detecting and filtering out this signal requires the use of high frequency data.
引用
收藏
页码:1799 / 1813
页数:14
相关论文
共 50 条
  • [21] Skillful regional prediction of Arctic sea ice on seasonal timescales
    Bushuk, Mitchell
    Msadek, Rym
    Winton, Michael
    Vecchi, Gabriel A.
    Gudgel, Rich
    Rosati, Anthony
    Yang, Xiaosong
    GEOPHYSICAL RESEARCH LETTERS, 2017, 44 (10) : 4953 - 4964
  • [22] Arctic Sea Ice Seasonal Prediction by a Linear Markov Model
    Yuan, Xiaojun
    Chen, Dake
    Li, Cuihua
    Wang, Lei
    Wang, Wanqiu
    JOURNAL OF CLIMATE, 2016, 29 (22) : 8151 - 8173
  • [23] Subseasonal-to-Seasonal Arctic Sea Ice Forecast Skill Improvement from Sea Ice Concentration Assimilation
    Zhang, Yong-Fei
    Bushuk, Mitchell
    Winton, Michael
    Hurlin, Bill
    Delworth, Thomas
    Harrison, Matthew
    Jia, Liwei
    Lu, Feiyu
    Rosati, Anthony
    Yang, Xiaosong
    JOURNAL OF CLIMATE, 2022, 35 (13) : 4233 - 4252
  • [24] EC-Earth V2.2: description and validation of a new seamless earth system prediction model
    Hazeleger, W.
    Wang, X.
    Severijns, C.
    Stefanescu, S.
    Bintanja, R.
    Sterl, A.
    Wyser, K.
    Semmler, T.
    Yang, S.
    van den Hurk, B.
    van Noije, T.
    van der Linden, E.
    van der Wiel, K.
    CLIMATE DYNAMICS, 2012, 39 (11) : 2611 - 2629
  • [25] Implications of Arctic Sea Ice Decline for the Earth System
    Bhatt, Uma S.
    Walker, Donald A.
    Walsh, John E.
    Carmack, Eddy C.
    Frey, Karen E.
    Meier, Walter N.
    Moore, Sue E.
    Parmentier, Frans-Jan W.
    Post, Eric
    Romanovsky, Vladimir E.
    Simpson, William R.
    ANNUAL REVIEW OF ENVIRONMENT AND RESOURCES, VOL 39, 2014, 39 : 57 - +
  • [26] EC-Earth V2.2: description and validation of a new seamless earth system prediction model
    W. Hazeleger
    X. Wang
    C. Severijns
    S. Ştefănescu
    R. Bintanja
    A. Sterl
    K. Wyser
    T. Semmler
    S. Yang
    B. van den Hurk
    T. van Noije
    E. van der Linden
    K. van der Wiel
    Climate Dynamics, 2012, 39 : 2611 - 2629
  • [27] Multi-model seasonal forecast of Arctic sea-ice: forecast uncertainty at pan-Arctic and regional scales
    Blanchard-Wrigglesworth, E.
    Barthelemy, A.
    Chevallier, M.
    Cullather, R.
    Fuckar, N.
    Massonnet, F.
    Posey, P.
    Wang, W.
    Zhang, J.
    Ardilouze, C.
    Bitz, C. M.
    Vernieres, G.
    Wallcraft, A.
    Wang, M.
    CLIMATE DYNAMICS, 2017, 49 (04) : 1399 - 1410
  • [28] Multi-model seasonal forecast of Arctic sea-ice: forecast uncertainty at pan-Arctic and regional scales
    E. Blanchard-Wrigglesworth
    A. Barthélemy
    M. Chevallier
    R. Cullather
    N. Fučkar
    F. Massonnet
    P. Posey
    W. Wang
    J. Zhang
    C. Ardilouze
    C. M. Bitz
    G. Vernieres
    A. Wallcraft
    M. Wang
    Climate Dynamics, 2017, 49 : 1399 - 1410
  • [29] Subseasonal-to-seasonal prediction of arctic sea ice using a fully coupled dynamical ensemble forecast system (vol 295, 107014, 2023)
    Liu, Anling
    Yang, Jing
    Bao, Qing
    He, Bian
    Wu, Xiaofei
    Liu, Jiping
    Kim, Seong-Joong
    Fan, Yalan
    ATMOSPHERIC RESEARCH, 2023, 295
  • [30] Pacific circulation response to eastern Arctic sea ice reduction in seasonal forecast simulations
    Seidenglanz, Anne
    Athanasiadis, Panos
    Ruggieri, Paolo
    Cvijanovic, Ivana
    Li, Camille
    Gualdi, Silvio
    CLIMATE DYNAMICS, 2021, 57 (9-10) : 2687 - 2700