Bayesian neural networks with variable selection for prediction of genotypic values

被引:0
|
作者
Giel H. H. van Bergen
Pascal Duenk
Cornelis A. Albers
Piter Bijma
Mario P. L. Calus
Yvonne C. J. Wientjes
Hilbert J. Kappen
机构
[1] Donders Institute for Brain Cognition and Behavior,SNN Machine Learning Group, Biophysics Department
[2] Radboud University,Animal Breeding and Genomics
[3] Wageningen University and Research,Department of Molecular Developmental Biology
[4] Radboud Institute for Molecular Life Sciences,Department of Human Genetics
[5] Radboud University,undefined
[6] Donders Institute for Brain,undefined
[7] Cognition and Behaviour,undefined
[8] Radboud University Medical Center,undefined
[9] Euretos B.V.,undefined
[10] Yalelaan 1,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Bayesian neural networks for prediction of protein secondary structure
    Shao, JL
    Xu, D
    Wang, LZ
    Wang, YF
    [J]. ADVANCED DATA MINING AND APPLICATIONS, PROCEEDINGS, 2005, 3584 : 544 - 551
  • [32] VARIABLE DEPTH BAYESIAN NEURAL NETWORKS USING REVERSIBLE JUMPS
    Berezowski, Jon
    Johansen, Thomas Haugland
    Jonas, Nordhaug Myhre
    Godtliebsen, Fred
    [J]. 2022 IEEE 32ND INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2022,
  • [33] Bayesian neural networks for the prediction of stochastic travel times in urban networks
    van Hinsbergen, C. P. I. J.
    Hegyi, A.
    van Lint, J. W. C.
    van Zuylen, H. J.
    [J]. IET INTELLIGENT TRANSPORT SYSTEMS, 2011, 5 (04) : 259 - 265
  • [34] Nonlinear Variable Selection via Deep Neural Networks
    Chen, Yao
    Gao, Qingyi
    Liang, Faming
    Wang, Xiao
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2021, 30 (02) : 484 - 492
  • [35] Information-theoretic variable selection in neural networks
    Kamimura, Ryotaro
    Yoshida, Fumihiko
    Toshie, Yamashita
    Kitajima, Ryozo
    [J]. 2007 IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTATIONAL INTELLIGENCE, VOLS 1 AND 2, 2007, : 222 - +
  • [36] Variable selection using feedforward and recurrent neural networks
    Munoz, A
    Czernichow, T
    [J]. ENGINEERING INTELLIGENT SYSTEMS FOR ELECTRICAL ENGINEERING AND COMMUNICATIONS, 1998, 6 (02): : 91 - 102
  • [37] Variable architecture Bayesian Neural Network: Model selection based on EMC
    Bozza, Silvia
    Mantovan, Pietro
    [J]. DATA ANALYSIS, CLASSIFICATION AND THE FORWARD SEARCH, 2006, : 77 - 84
  • [38] Integration of survival and binary data for variable selection and prediction: a Bayesian approach
    Maity, Arnab Kumar
    Carroll, Raymond J.
    Mallick, Bani K.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2019, 68 (05) : 1577 - 1595
  • [39] Bayesian Regression Trees for High-Dimensional Prediction and Variable Selection
    Linero, Antonio R.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2018, 113 (522) : 626 - 636
  • [40] Model Selection in Bayesian Neural Networks via Horseshoe Priors
    Ghosh, Soumya
    Yao, Jiayu
    Doshi-Velez, Finale
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2019, 20