Perelman’s lambda-functional and the stability of Ricci-flat metrics

被引:0
|
作者
Robert Haslhofer
机构
[1] ETH,Department of Mathematics
关键词
53C44;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we introduce a new method (based on Perelman’s λ-functional) to study the stability of compact Ricci-flat metrics. Under the assumption that all infinitesimal Ricci-flat deformations are integrable we prove: (a) a Ricci-flat metric is a local maximizer of λ in a C2,α-sense if and only if its Lichnerowicz Laplacian is nonpositive, (b) λ satisfies a Łojasiewicz-Simon gradient inequality, (c) the Ricci flow does not move excessively in gauge directions. As consequences, we obtain a rigidity result, a new proof of Sesum’s dynamical stability theorem, and a dynamical instability theorem.
引用
收藏
页码:481 / 504
页数:23
相关论文
共 50 条
  • [21] ON A CLASS OF PROJECTIVELY RICCI-FLAT DOUGLAS METRICS
    Zhu, Hongmei
    HOUSTON JOURNAL OF MATHEMATICS, 2022, 48 (01): : 91 - 109
  • [22] On a class of projectively Ricci-flat Finsler metrics
    Zhu, Hongmei
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2020, 73
  • [23] Ricci-flat deformations of metrics with exceptional holonomy
    Nordstroem, Johannes
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2013, 45 : 1004 - 1018
  • [24] ADIABATIC LIMITS OF RICCI-FLAT KAHLER METRICS
    Tosatti, Valentino
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2010, 84 (02) : 427 - 453
  • [25] Diagram involutions and homogeneous Ricci-flat metrics
    Conti, Diego
    del Barco, Viviana
    Rossi, Federico A.
    MANUSCRIPTA MATHEMATICA, 2021, 165 (3-4) : 381 - 413
  • [26] Diagram involutions and homogeneous Ricci-flat metrics
    Diego Conti
    Viviana del Barco
    Federico A. Rossi
    manuscripta mathematica, 2021, 165 : 381 - 413
  • [27] Two conjectures on Ricci-flat Kahler metrics
    Loi, Andrea
    Salis, Filippo
    Zuddas, Fabio
    MATHEMATISCHE ZEITSCHRIFT, 2018, 290 (1-2) : 599 - 613
  • [28] RICCI-FLAT FINSLER METRICS BY WARPED PRODUCT
    Marcal, P. A. T. R. I. C. I. A.
    Shen, Z. H. O. N. G. M. I. N.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, : 2169 - 2183
  • [29] Ricci-flat Kahler metrics on canonical bundles
    Bielawski, R
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2002, 132 : 471 - 479
  • [30] The Stability Inequality for Ricci-Flat Cones
    Stuart Hall
    Robert Haslhofer
    Michael Siepmann
    Journal of Geometric Analysis, 2014, 24 : 472 - 494