The relationship between preferred and optimal positioning during submaximal cycle ergometry

被引:0
|
作者
D. P. Heil
T. R. Derrick
S. Whittlesey
机构
[1] Dept. of Physical Education,
[2] 8600 University Boulevard,undefined
[3] University of Southern Indiana,undefined
[4] Evansville,undefined
[5] IN–47712–3599,undefined
[6] USA,undefined
[7] Dept. of Exercise Science,undefined
[8] University of Massachusetts,undefined
[9] Amherst,undefined
[10] MA 01003,undefined
[11] USA,undefined
关键词
Key words Bicycling ;  Hip Angle ;  Optimization ;   Steady-state;
D O I
暂无
中图分类号
学科分类号
摘要
This study was designed to determine how changes in oxygen uptake (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}O2) and heart rate (HR) during submaximal cycle ergometry were determined by changes in cycle geometry and/or lower-limb kinematics. Fourteen trained cyclists [Mean (SD): age, 25.5 (6.4) years; body mass 74.4 (8.8) kg; peak \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}O2, 4.76 (0.79) l. min−1 peak] were tested at three seat-tube angles (70°, 80°, 90°) at each of three trunk angles (10°, 20°, 30°) using a modified Monark cycle ergometer. All conditions were tested at a power output corresponding to 95% of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}O2 at each subject's ventilatory threshold while pedalling at 90 rpm and using aerodynamic handlebars. Sagittal-view kinematics for the hip, knee, and ankle joints were also recorded for all conditions and for the subjects' preferred positioning on their own bicycles. No combination of seat-tube and trunk angle could be considered optimal since many of the nine conditions elicited statistically similar mean \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}O2 and HR values. Mean hip angle (HA) was the only kinematic variable that changed consistently across conditions. A regression relationship was not observed between mean \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}O2 or HR and mean hip angle values (P > 0.45). Significant curvilinear relationships were observed, however, between Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}O2 (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}O2 − minimum \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}O2) and ΔHA (mean HA − preferred HA) using the data from all subjects (R = 0.45, SEE = 0.13 l . min−1) and using group mean values (R = 0.93, SEE = 0.03 l . min−1). In both cases Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}O2 minimized at ΔHA = 0, which corresponded to the subjects' preferred HA from their own bicycles. Thus, subjects optimized their \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}O2 cost at cycle geometries that elicited similar lower-limb kinematics as the preferred geometries from their own bicycles.
引用
收藏
页码:160 / 165
页数:5
相关论文
共 50 条
  • [21] Accuracy of prediction equations to estimate submaximal VO2 during cycle ergometry:: the HERITAGE Family Study
    Stanforth, PR
    Ruthven, MD
    Gagnon, J
    Bouchard, C
    Leon, AS
    Rao, DC
    Skinner, JS
    Wilmore, JH
    MEDICINE AND SCIENCE IN SPORTS AND EXERCISE, 1999, 31 (01): : 183 - 188
  • [22] ESTIMATION OF VO2 AT THE VENTILATORY THRESHOLD USING SUBMAXIMAL CYCLE ERGOMETRY
    Gaskill, S. E.
    Slivka, D.
    Ruby, B. E.
    MEDICINE AND SCIENCE IN SPORTS AND EXERCISE, 2001, 33 (05): : S23 - S23
  • [23] TEMPERATURE EFFECTS ON VENTILATORY RATE, HEART-RATE, AND PREFERRED PEDAL RATE DURING CYCLE ERGOMETRY
    LEWEKE, F
    BRUCK, K
    OLSCHEWSKI, H
    JOURNAL OF APPLIED PHYSIOLOGY, 1995, 79 (03) : 781 - 785
  • [24] Cortisol and testosterone concentrations in wheelchair athletes during submaximal wheelchair ergometry
    Castellani, JW
    Armstrong, LE
    Kenefick, RW
    Pasqualicchio, AA
    Riebe, D
    Gabaree, CLV
    Maresh, CM
    EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY, 2001, 84 (1-2) : 42 - 47
  • [25] An Investigation Of Bilateral Differences In Emg Responses During Submaximal Arm Ergometry
    Mookerjee, Swapan
    Beyer, Kyle S.
    MEDICINE & SCIENCE IN SPORTS & EXERCISE, 2020, 52 (07) : 273 - 273
  • [26] Cortisol and testosterone concentrations in wheelchair athletes during submaximal wheelchair ergometry
    John W. Castellani
    Lawrence E. Armstrong
    Robert W. Kenefick
    Angela A. Pasqualicchio
    Deborah Riebe
    Catherine L. V. Gabaree
    Carl M. Maresh
    European Journal of Applied Physiology, 2001, 84 : 42 - 47
  • [27] Relationship between maximal oxygen uptake during cycle ergometry and 6 Minute Walk Test in individuals with chronic stroke
    Pang, MYC
    Eng, JJ
    Dawson, AS
    STROKE, 2004, 35 (06) : E196 - E196
  • [28] THE EFFECT OF TRAINING SPECIFICITY ON MAXIMAL AND SUBMAXIMAL PHYSIOLOGICAL-RESPONSES TO TREADMILL AND CYCLE ERGOMETRY
    FERNHALL, B
    KOHRT, W
    JOURNAL OF SPORTS MEDICINE AND PHYSICAL FITNESS, 1990, 30 (03): : 268 - 275
  • [29] OPTIMAL PEDALING RATE IN PROLONGED BOUTS OF CYCLE ERGOMETRY
    COAST, JR
    COX, RH
    WELCH, HG
    MEDICINE AND SCIENCE IN SPORTS AND EXERCISE, 1986, 18 (02): : 225 - 230
  • [30] Response similarities between cycle and rowing ergometry
    Barfield, JP
    Sherman, TE
    Michael, TJ
    PHYSICAL THERAPY IN SPORT, 2003, 4 (02) : 82 - 86