The relationship between preferred and optimal positioning during submaximal cycle ergometry

被引:0
|
作者
D. P. Heil
T. R. Derrick
S. Whittlesey
机构
[1] Dept. of Physical Education,
[2] 8600 University Boulevard,undefined
[3] University of Southern Indiana,undefined
[4] Evansville,undefined
[5] IN–47712–3599,undefined
[6] USA,undefined
[7] Dept. of Exercise Science,undefined
[8] University of Massachusetts,undefined
[9] Amherst,undefined
[10] MA 01003,undefined
[11] USA,undefined
关键词
Key words Bicycling ;  Hip Angle ;  Optimization ;   Steady-state;
D O I
暂无
中图分类号
学科分类号
摘要
This study was designed to determine how changes in oxygen uptake (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}O2) and heart rate (HR) during submaximal cycle ergometry were determined by changes in cycle geometry and/or lower-limb kinematics. Fourteen trained cyclists [Mean (SD): age, 25.5 (6.4) years; body mass 74.4 (8.8) kg; peak \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}O2, 4.76 (0.79) l. min−1 peak] were tested at three seat-tube angles (70°, 80°, 90°) at each of three trunk angles (10°, 20°, 30°) using a modified Monark cycle ergometer. All conditions were tested at a power output corresponding to 95% of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}O2 at each subject's ventilatory threshold while pedalling at 90 rpm and using aerodynamic handlebars. Sagittal-view kinematics for the hip, knee, and ankle joints were also recorded for all conditions and for the subjects' preferred positioning on their own bicycles. No combination of seat-tube and trunk angle could be considered optimal since many of the nine conditions elicited statistically similar mean \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}O2 and HR values. Mean hip angle (HA) was the only kinematic variable that changed consistently across conditions. A regression relationship was not observed between mean \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}O2 or HR and mean hip angle values (P > 0.45). Significant curvilinear relationships were observed, however, between Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}O2 (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}O2 − minimum \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}O2) and ΔHA (mean HA − preferred HA) using the data from all subjects (R = 0.45, SEE = 0.13 l . min−1) and using group mean values (R = 0.93, SEE = 0.03 l . min−1). In both cases Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}O2 minimized at ΔHA = 0, which corresponded to the subjects' preferred HA from their own bicycles. Thus, subjects optimized their \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}O2 cost at cycle geometries that elicited similar lower-limb kinematics as the preferred geometries from their own bicycles.
引用
收藏
页码:160 / 165
页数:5
相关论文
共 50 条
  • [1] The relationship between preferred and optimal positioning during submaximal cycle ergometry
    Heil, DP
    Derrick, TR
    Whittlesey, S
    EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY AND OCCUPATIONAL PHYSIOLOGY, 1997, 75 (02) : 160 - 165
  • [2] Mechanomyographic and electromyographic responses during submaximal cycle ergometry
    Terry J. Housh
    Sharon R. Perry
    Anthony J. Bull
    Glen O. Johnson
    Kyle T. Ebersole
    Dona J. Housh
    Herbert A. deVries
    European Journal of Applied Physiology, 2000, 83 : 381 - 387
  • [3] Mechanomyographic and electromyographic responses during submaximal cycle ergometry
    Housh, TJ
    Perry, SR
    Bull, AJ
    Johnson, GO
    Ebersole, KT
    Housh, DJ
    deVries, HA
    EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY, 2000, 83 (4-5) : 381 - 387
  • [4] Low doses of caffeine reduce heart rate during submaximal cycle ergometry
    McClaran, Steven R.
    Wetter, Thomas J.
    JOURNAL OF THE INTERNATIONAL SOCIETY OF SPORTS NUTRITION, 2007, 4
  • [5] The effects of maximal and submaximal arm crank ergometry and cycle ergometry on postural sway
    Hill, Mathew W.
    Goss-Sampson, Mark
    Duncan, Michael J.
    Price, Michael J.
    EUROPEAN JOURNAL OF SPORT SCIENCE, 2014, 14 (08) : 782 - 790
  • [6] Submaximal breathing reserve during incremental cycle ergometry: reference values and clinical validation
    Neder, J. A.
    Berton, D. C.
    Plachi, F.
    Phillips, D.
    Smyth, R.
    James, M.
    Crinion, S.
    De-Torres, J. P.
    O'Donnell, D. E.
    EUROPEAN RESPIRATORY JOURNAL, 2022, 60
  • [7] THE RELATIONSHIP BETWEEN ANAEROBIC THRESHOLD AND HEART-RATE LINEARITY DURING CYCLE ERGOMETRY
    FRANCIS, KT
    MCCLATCHEY, PR
    SUMSION, JR
    HANSEN, DE
    EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY AND OCCUPATIONAL PHYSIOLOGY, 1989, 59 (04): : 273 - 277
  • [8] RELATIONSHIP BETWEEN BODY AND LEG VO2 DURING MAXIMAL CYCLE ERGOMETRY
    KNIGHT, DR
    POOLE, DC
    SCHAFFARTZIK, W
    GUY, HJ
    PREDILETTO, R
    HOGAN, MC
    WAGNER, PD
    JOURNAL OF APPLIED PHYSIOLOGY, 1992, 73 (03) : 1114 - 1121
  • [9] Hemodynamic Responses to Submaximal Cycle Ergometry in Individuals with Down Syndrome
    Fernhall, Bo
    Figueroa, Arturo
    Baynard, Tracy
    Goulopoulou, Styliani
    Collier, Scott
    Giannopoulou, Ifigenia
    Beets, Michael
    Pitetti, Kenneth
    MEDICINE AND SCIENCE IN SPORTS AND EXERCISE, 2006, 38 (05): : S114 - S115
  • [10] RATINGS OF PERCEIVED EXERTION IN THE PREDICTION OF MAXIMAL OXYGEN-UPTAKE DURING SUBMAXIMAL CYCLE ERGOMETRY
    WILMORE, JH
    ROBY, FB
    STANFORTH, PR
    BUONO, MJ
    CONSTABLE, SH
    TSAO, Y
    LOWDON, BJ
    INTERNATIONAL JOURNAL OF SPORTS MEDICINE, 1985, 6 (04) : 241 - 241