DeepEMhancer: a deep learning solution for cryo-EM volume post-processing

被引:0
|
作者
Ruben Sanchez-Garcia
Josue Gomez-Blanco
Ana Cuervo
Jose Maria Carazo
Carlos Oscar S. Sorzano
Javier Vargas
机构
[1] Centro Nacional de Biotecnología-CSIC,Biocomputing Unit
[2] McGill University,Department of Anatomy and Cell Biology
[3] Universidad Complutense de Madrid,Departamento de Óptica
[4] University of Oxford,Department of Statistics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Cryo-EM maps are valuable sources of information for protein structure modeling. However, due to the loss of contrast at high frequencies, they generally need to be post-processed to improve their interpretability. Most popular approaches, based on global B-factor correction, suffer from limitations. For instance, they ignore the heterogeneity in the map local quality that reconstructions tend to exhibit. Aiming to overcome these problems, we present DeepEMhancer, a deep learning approach designed to perform automatic post-processing of cryo-EM maps. Trained on a dataset of pairs of experimental maps and maps sharpened using their respective atomic models, DeepEMhancer has learned how to post-process experimental maps performing masking-like and sharpening-like operations in a single step. DeepEMhancer was evaluated on a testing set of 20 different experimental maps, showing its ability to reduce noise levels and obtain more detailed versions of the experimental maps. Additionally, we illustrated the benefits of DeepEMhancer on the structure of the SARS-CoV-2 RNA polymerase.
引用
收藏
相关论文
共 50 条
  • [21] Methods to account for movement and flexibility in cryo-EM data processing
    Rawson, S.
    Iadanza, M. G.
    Ranson, N. A.
    Muench, S. P.
    [J]. METHODS, 2016, 100 : 35 - 41
  • [22] Principles of cryo-EM single-particle image processing
    Sigworth, Fred J.
    [J]. MICROSCOPY, 2016, 65 (01) : 57 - 67
  • [23] Using Scipion for stream image processing at Cryo-EM facilities
    Gomez-Blanco, J.
    de la Rosa-Trevin, J. M.
    Marabini, R.
    del Cano, L.
    Jimenez, A.
    Martinez, M.
    Melero, R.
    Majtner, T.
    Maluenda, D.
    Mota, J.
    Rancel, Y.
    Ramirez-Aportela, E.
    Vilas, J. L.
    Carroni, M.
    Fleischmann, S.
    Lindahl, E.
    Ashton, A. W.
    Basham, M.
    Clare, D. K.
    Savage, K.
    Siebert, C. A.
    Sharov, G. G.
    Sorzano, C. O. S.
    Conesa, P.
    Carazo, J. M.
    [J]. JOURNAL OF STRUCTURAL BIOLOGY, 2018, 204 (03) : 457 - 463
  • [24] cryoHub: A customizable web interface for cryo-EM data processing
    Li, Yilai
    Walls, Benjamin
    Liu, Han
    Yang, Le
    Xiao, Rong
    Li, Chuteng
    Chen, Zhehao
    Lugai, Chuck
    Cianfrocco, Michael
    [J]. ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2022, 78 : A214 - A214
  • [25] Rapid Solution of the Cryo-EM Reconstruction Problem by Frequency Marching
    Barnett, Alex
    Greengard, Leslie
    Pataki, Andras
    Spivak, Marina
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2017, 10 (03): : 1170 - 1195
  • [26] DeepMainmast: integrated protocol of protein structure modeling for cryo-EM with deep learning and structure prediction
    Terashi, Genki
    Wang, Xiao
    Prasad, Devashish
    Nakamura, Tsukasa
    Kihara, Daisuke
    [J]. NATURE METHODS, 2023, 21 (1) : 122 - 131
  • [27] DeepMainmast and cryoREAD: Protein and DNA/RNA structure modeling for cryo-EM using deep learning
    Terashi, Genki
    Wang, Xiao
    Nakamura, Tsukasa
    Kihara, Daisuke
    [J]. BIOPHYSICAL JOURNAL, 2024, 123 (03) : 133A - 133A
  • [28] A deep learning-based method for modeling of RNA structures from cryo-EM maps
    Li, Tao
    Huang, Sheng-You
    [J]. NATURE BIOTECHNOLOGY, 2024,
  • [29] DeepAlign, a 3D alignment method based on regionalized deep learning for Cryo-EM
    Jimenez-Moreno, A.
    Strelak, D.
    Filipovic, J.
    Carazo, J. M.
    Sorzano, C. O. S.
    [J]. JOURNAL OF STRUCTURAL BIOLOGY, 2021, 213 (02)
  • [30] DeepMainmast: integrated protocol of protein structure modeling for cryo-EM with deep learning and structure prediction
    Genki Terashi
    Xiao Wang
    Devashish Prasad
    Tsukasa Nakamura
    Daisuke Kihara
    [J]. Nature Methods, 2024, 21 : 122 - 131