Global optimal solutions to a class of quadrinomial minimization problems with one quadratic constraint

被引:0
|
作者
Y.-B Yuan
S.-C. Fang
D. Y. Gao
机构
[1] China Jiliang University,Institute of Metrology and Computational Science
[2] North Carolina State University,Department of Industrial and Systems Engineering
[3] University of Ballarat,Graduate School of Information Technology and Mathematical Sciences
来源
关键词
Nonconvex optimization; Canonical duality; Triality theory; NP-hard problem; Global optimization;
D O I
暂无
中图分类号
学科分类号
摘要
This paper studies the canonical duality theory for solving a class of quadrinomial minimization problems subject to one general quadratic constraint. It is shown that the nonconvex primal problem in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}^n}$$\end{document} can be converted into a concave maximization dual problem over a convex set in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}^2}$$\end{document}, such that the problem can be solved more efficiently. The existence and uniqueness theorems of global minimizers are provided using the triality theory. Examples are given to illustrate the results obtained.
引用
收藏
页码:195 / 209
页数:14
相关论文
共 50 条
  • [11] Canonical Dual Solutions to Quadratic Optimization over One Quadratic Constraint
    Xing, Wenxun
    Fang, Shu-Cherng
    Sheu, Ruey-Lin
    Zhang, Liping
    ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2015, 32 (01)
  • [12] CLOSED-FORM SOLUTIONS FOR A CLASS OF OPTIMAL QUADRATIC REGULATOR PROBLEMS WITH TERMINAL CONSTRAINTS
    JUANG, JN
    TURNER, JD
    CHUN, HM
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 1986, 108 (01): : 44 - 48
  • [13] Global optimality conditions for nonconvex minimization problems with quadratic constraints
    Guoquan Li
    Zhiyou Wu
    Jing Quan
    Journal of Inequalities and Applications, 2015
  • [14] Global optimality conditions for nonconvex minimization problems with quadratic constraints
    Li, Guoquan
    Wu, Zhiyou
    Quan, Jing
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [15] Conditions for global optimality of quadratic minimization problems with lmi constraints
    Jeyakumar, Vaithilingam
    Wu, Zhiyou
    ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2007, 24 (02) : 149 - 160
  • [16] Non-convex quadratic minimization problems with quadratic constraints: global optimality conditions
    Jeyakumar, V.
    Rubinov, A. M.
    Wu, Z. Y.
    MATHEMATICAL PROGRAMMING, 2007, 110 (03) : 521 - 541
  • [17] ON THE CONVEXITY AND EXISTENCE OF SOLUTIONS TO QUADRATIC PROGRAMMING PROBLEMS WITH CONVEX CONSTRAINT
    Jian, Jinbao
    Chao, Miantao
    Jiang, Xianzhen
    Han, Daolan
    PACIFIC JOURNAL OF OPTIMIZATION, 2019, 15 (01): : 145 - 155
  • [18] Non-convex quadratic minimization problems with quadratic constraints: global optimality conditions
    V. Jeyakumar
    A. M. Rubinov
    Z. Y. Wu
    Mathematical Programming, 2007, 110 : 521 - 541
  • [19] Optimal Sets for a Class of Minimization Problems with Convex Constraints
    Bianchini, Chiara
    Henrot, Antoine
    JOURNAL OF CONVEX ANALYSIS, 2012, 19 (03) : 725 - 758
  • [20] A class of Stochastic optimal control problems with state constraint
    Ishii, H
    Loreti, P
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2002, 51 (05) : 1167 - 1196