Global optimal solutions to a class of quadrinomial minimization problems with one quadratic constraint

被引:0
|
作者
Y.-B Yuan
S.-C. Fang
D. Y. Gao
机构
[1] China Jiliang University,Institute of Metrology and Computational Science
[2] North Carolina State University,Department of Industrial and Systems Engineering
[3] University of Ballarat,Graduate School of Information Technology and Mathematical Sciences
来源
关键词
Nonconvex optimization; Canonical duality; Triality theory; NP-hard problem; Global optimization;
D O I
暂无
中图分类号
学科分类号
摘要
This paper studies the canonical duality theory for solving a class of quadrinomial minimization problems subject to one general quadratic constraint. It is shown that the nonconvex primal problem in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}^n}$$\end{document} can be converted into a concave maximization dual problem over a convex set in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}^2}$$\end{document}, such that the problem can be solved more efficiently. The existence and uniqueness theorems of global minimizers are provided using the triality theory. Examples are given to illustrate the results obtained.
引用
收藏
页码:195 / 209
页数:14
相关论文
共 50 条