Recently, Herbig–Schwarz–Seaton have shown that 3-large representations of a reductive group G give rise to a large class of symplectic singularities via Hamiltonian reduction. We show that these singularities are always terminal. We show that they are Q\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb {Q}}$$\end{document}-factorial if and only if G has finite abelianization. When G is connected and semi-simple, we show they are actually locally factorial. As a consequence, the symplectic singularities do not admit symplectic resolutions when G is semi-simple. We end with some open questions.