Inferring the dynamics of a spatial epidemic from time-series data

被引:0
|
作者
J. A. N. Filipe
W. Otten
G. J. Gibson
C. A. Gilligan
机构
[1] University of Cambridge,Department of Plant Sciences
[2] Heriot-Watt University,Department of Actuarial Mathematics and Statistics
[3] Imperial College London,Department of Infectious Disease Epidemiology
来源
关键词
Primary Infection; Secondary Infection; Near Neighbour; Disease Progress Curve; Pair Approximation;
D O I
暂无
中图分类号
学科分类号
摘要
Spatial interactions are key determinants in the dynamics of many epidemiological and ecological systems; therefore it is important to use spatio-temporal models to estimate essential parameters. However, spatially-explicit data sets are rarely available; moreover, fitting spatially-explicit models to such data can be technically demanding and computationally intensive. Thus non-spatial models are often used to estimate parameters from temporal data. We introduce a method for fitting models to temporal data in order to estimate parameters which characterise spatial epidemics. The method uses semi-spatial models and pair approximation to take explicit account of spatial clustering of disease without requiring spatial data. The approach is demonstrated for data from experiments with plant populations invaded by a common soilborne fungus, Rhizoctonia solani. Model inferences concerning the number of sources of disease and primary and secondary infections are tested against independent measures from spatio-temporal data. The applicability of the method to a wide range of host-pathogen systems is discussed.
引用
收藏
页码:373 / 391
页数:18
相关论文
共 50 条
  • [41] Discovering ecosystem models from time-series data
    George, D
    Saito, K
    Langley, P
    Bay, S
    Arrigo, KR
    [J]. DISCOVERY SCIENCE, PROCEEDINGS, 2003, 2843 : 141 - 152
  • [42] Modeling time-series data from microbial communities
    Ridenhour, Benjamin J.
    Brooker, Sarah L.
    Williams, Janet E.
    Van Leuven, James T.
    Miller, Aaron W.
    Dearing, M. Denise
    Remien, Christopher H.
    [J]. ISME JOURNAL, 2017, 11 (11): : 2526 - 2537
  • [43] TIME-SERIES ANALYSIS - EXAMPLE FROM GEOPHYSICAL DATA
    CHATFIEL.C
    PEPPER, MPG
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 1971, 20 (03) : 217 - &
  • [44] Inferring population dynamics from single-cell RNA-sequencing time series data
    Fischer, David S.
    Fiedler, Anna K.
    Kernfeld, Eric M.
    Genga, Ryan M. J.
    Bastidas-Ponce, Aimee
    Bakhti, Mostafa
    Lickert, Heiko
    Hasenauer, Jan
    Maehr, Rene
    Theis, Fabian J.
    [J]. NATURE BIOTECHNOLOGY, 2019, 37 (04) : 461 - +
  • [45] TRAINING KSIM MODELS FROM TIME-SERIES DATA
    BLACK, RL
    OLDHAM, WJB
    MARCY, WM
    [J]. TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE, 1994, 47 (03) : 293 - 307
  • [46] DYNOTEARS: Structure Learning from Time-Series Data
    Pamfil, Roxana
    Sriwattanaworachai, Nisara
    Desai, Shaan
    Pilgerstorfer, Philip
    Beaumont, Paul
    Georgatzis, Konstantinos
    Aragam, Bryon
    [J]. INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 1595 - 1604
  • [47] Modeling time-series data from microbial communities
    Benjamin J Ridenhour
    Sarah L Brooker
    Janet E Williams
    James T Van Leuven
    Aaron W Miller
    M Denise Dearing
    Christopher H Remien
    [J]. The ISME Journal, 2017, 11 : 2526 - 2537
  • [48] System estimation from metabolic time-series data
    Goel, Gautam
    Chou, I-Chun
    Voit, Eberhard O.
    [J]. BIOINFORMATICS, 2008, 24 (21) : 2505 - 2511
  • [49] Inferring population dynamics from single-cell RNA-sequencing time series data
    David S. Fischer
    Anna K. Fiedler
    Eric M. Kernfeld
    Ryan M. J. Genga
    Aimée Bastidas-Ponce
    Mostafa Bakhti
    Heiko Lickert
    Jan Hasenauer
    Rene Maehr
    Fabian J. Theis
    [J]. Nature Biotechnology, 2019, 37 : 461 - 468
  • [50] Large-scale nonlinear Granger causality for inferring directed dependence from short multivariate time-series data
    Axel Wismüller
    Adora M. Dsouza
    M. Ali Vosoughi
    Anas Abidin
    [J]. Scientific Reports, 11