The low-energy electron band structure of a two-dimensional Dirac nodal-line semimetal grown on a silicon surface

被引:0
|
作者
Hyun-Jeong Joo
Choongyu Hwang
Kyoo Kim
机构
[1] Pusan National University,Department of Physics
[2] Korea Atomic Energy Research Institute,undefined
来源
关键词
Dirac nodal-line fermions; Cu; Si; ARPES; Electron band structure;
D O I
暂无
中图分类号
学科分类号
摘要
The low-energy electron band structure of Cu2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}Si on Si(111) has been investigated using angle-resolved photoemission spectroscopy. Cu2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}Si exhibits two Dirac nodal-lines, stemming from the crossing of one electron-pocket with two hole-pockets, that are protected by mirror reflection symmetry. When Cu2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}Si is placed on Si(111), the hole-pockets and their satellite bands due to the quasi-5×5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$5\times 5$$\end{document} periodicity are clearly observed whereas the electron-pocket is observed with very weak spectral intensity. Interestingly, close to the Fermi energy, the hole-pockets exhibit almost linear energy-momentum dispersion when their spectral width is also linearly proportional to energy. These findings indicate that Cu2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}Si on Si(111) can host Dirac nodal-line fermions, of which low-energy excitations might depart from those of the conventional Fermi liquid.
引用
收藏
页码:34 / 39
页数:5
相关论文
共 50 条
  • [21] Dirac nodal line induced anomalous low-energy acoustic plasmons on beryllium (0001) surface
    Li, Ronghan
    Li, Jiangxu
    Liu, Peitao
    Sun, Yan
    Chen, Xing-Qiu
    PHYSICAL REVIEW B, 2023, 107 (19)
  • [22] Quasi-two-dimensional superconductivity in topological nodal-line semimetal SnTaS2 nanoflakes
    Zhu, Ankang
    Zhu, Mengcheng
    Nie, Yong
    Han, Minglong
    Li, Liang
    Liu, Xue
    Chen, Xuegang
    Han, Yuyan
    Gao, Wenshuai
    Tian, Mingliang
    PHYSICAL REVIEW B, 2024, 110 (11)
  • [23] Prediction of two-dimensional nodal-line semimetals in a carbon nitride covalent network
    Chen, Haiyuan
    Zhang, Shunhong
    Jiang, Wei
    Zhang, Chunxiao
    Guo, Heng
    Liu, Zheng
    Wang, Zhiming
    Liu, Feng
    Niu, Xiaobin
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (24) : 11252 - 11259
  • [24] Twist-Angle Tuning of Electronic Structure in Two-Dimensional Dirac Nodal Line Semimetal Au2Ge on Au(111)
    Tian, Qiwei
    Tagani, Meysam Bagheri
    Vishkayi, Sahar Izadi
    Zhang, Chen
    Li, Bo
    Zhang, Li
    Yin, Long-Jing
    Tian, Yuan
    Zhang, Lijie
    Qin, Zhihui
    ACS NANO, 2024, 18 (12) : 9011 - 9018
  • [25] Quantum Hall effect and optical magnetoconductivity of two-dimensional topological nodal-line semimetals
    Barati, Shahin
    Rahimpoor, Hamid
    Abedinpour, Saeed H.
    PHYSICAL REVIEW B, 2025, 111 (07)
  • [26] Robust Topological Nodal-Line Semimetals from Periodic Vacancies in Two-Dimensional Materials
    Liu, F.
    Qu, F.
    Zutic, I
    Xie, S.
    Liu, D.
    Fonseca, A. L. A.
    Malard, M.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2021, 12 (24): : 5710 - 5715
  • [27] Inelastic effects in low-energy electron reflectivity of two-dimensional materials
    Gao, Qin
    Mende, Patrick C.
    Widom, Michael
    Feenstra, Randall M.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2015, 33 (02):
  • [28] Two-dimensional Weyl nodal-line semimetal in a d0 ferromagnetic K2N monolayer with a high Curie temperature
    Jin, Lei
    Zhang, Xiaoming
    Liu, Ying
    Dai, Xuefang
    Shen, Xunan
    Wang, Liying
    Liu, Guodong
    PHYSICAL REVIEW B, 2020, 102 (12)
  • [29] A novel two-dimensional all-carbon Dirac node-line semimetal
    Wang, Youjie
    Gao, Qian
    Hu, Zhenpeng
    EPL, 2024, 145 (05)
  • [30] Prediction of a two-dimensional high Curie temperature Weyl nodal line kagome semimetal
    Li, Jie
    Wang, Xiao-Tian
    Chen, Ya-Qing
    Wei, Yu-Hao
    Yuan, Hong-Kuan
    Tian, Chun-Ling
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (04) : 3092 - 3100