The low-energy electron band structure of a two-dimensional Dirac nodal-line semimetal grown on a silicon surface

被引:0
|
作者
Hyun-Jeong Joo
Choongyu Hwang
Kyoo Kim
机构
[1] Pusan National University,Department of Physics
[2] Korea Atomic Energy Research Institute,undefined
来源
关键词
Dirac nodal-line fermions; Cu; Si; ARPES; Electron band structure;
D O I
暂无
中图分类号
学科分类号
摘要
The low-energy electron band structure of Cu2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}Si on Si(111) has been investigated using angle-resolved photoemission spectroscopy. Cu2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}Si exhibits two Dirac nodal-lines, stemming from the crossing of one electron-pocket with two hole-pockets, that are protected by mirror reflection symmetry. When Cu2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}Si is placed on Si(111), the hole-pockets and their satellite bands due to the quasi-5×5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$5\times 5$$\end{document} periodicity are clearly observed whereas the electron-pocket is observed with very weak spectral intensity. Interestingly, close to the Fermi energy, the hole-pockets exhibit almost linear energy-momentum dispersion when their spectral width is also linearly proportional to energy. These findings indicate that Cu2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}Si on Si(111) can host Dirac nodal-line fermions, of which low-energy excitations might depart from those of the conventional Fermi liquid.
引用
收藏
页码:34 / 39
页数:5
相关论文
共 50 条
  • [1] The low-energy electron band structure of a two-dimensional Dirac nodal-line semimetal grown on a silicon surface
    Joo, Hyun-Jeong
    Hwang, Choongyu
    Kim, Kyoo
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2021, 78 (01) : 34 - 39
  • [2] Plasmons in a two-dimensional nonsymmorphic nodal-line semimetal
    Cao, Jin
    Chang, Hao-Ran
    Feng, Xiaolong
    Yao, Yugui
    Yang, Shengyuan A.
    PHYSICAL REVIEW B, 2023, 107 (11)
  • [3] Electron transport in Dirac nodal-line semimetal ZrSiS
    Hussain, G.
    Rao, X.
    Li, N.
    Chu, W. J.
    Liu, X. G.
    Zhao, X.
    Sun, X. F.
    PHYSICS LETTERS A, 2020, 384 (36)
  • [4] Visualizing Dirac nodal-line band structure of topological semimetal ZrGeSe by ARPES
    Cheng, Zhengwang
    Zhang, Zongyuan
    Sun, Haigen
    Li, Shaojian
    Yuan, Hui
    Wang, Zhijun
    Cao, Yan
    Shao, Zhibin
    Bian, Qi
    Zhang, Xin
    Li, Fangsen
    Feng, Jiagui
    Ding, Sunan
    Mao, Zhiqiang
    Pan, Minghu
    APL MATERIALS, 2019, 7 (05)
  • [5] Anomalous plasmons in a two-dimensional Dirac nodal-line Lieb lattice
    Ding, Chao
    Gao, Han
    Geng, Wenhui
    Zhao, Mingwen
    NANOSCALE ADVANCES, 2021, 3 (04): : 1127 - 1135
  • [6] A two-dimensional borophene monolayer with ideal Dirac nodal-line fermions
    Zhong, Chengyong
    Li, Xuelian
    Feng, Chunbao
    Yu, Peng
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (19) : 13587 - 13592
  • [7] Surface Nonlinear Optics on Centrosymmetric Dirac Nodal-Line Semimetal ZrSiS
    Chi, Shumeng
    Liang, Fei
    Chen, Hongxiang
    Tian, Wendong
    Zhang, Han
    Yu, Haohai
    Wang, Gang
    Lin, Zheshuai
    Hu, Jiangping
    Zhang, Huaijin
    ADVANCED MATERIALS, 2020, 32 (02)
  • [8] Two-dimensional antiferromagnetic nodal-line semimetal and spin Hall effect in MnC4
    Fernandez, H.
    Gonzalez-Hernandez, R.
    Paez, J.
    Hoat, D. M.
    Tan, N. Takeuchi
    Guerrero-Sanchez, J.
    Perez-Tijerina, E. G.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2024, 36 (15)
  • [9] Band structure of a two-dimensional Dirac semimetal from cyclotron resonance
    Shuvaev, A. M.
    Dziom, V.
    Mikhailov, N. N.
    Kvon, Z. D.
    Shao, Y.
    Basov, D. N.
    Pimenov, A.
    PHYSICAL REVIEW B, 2017, 96 (15)
  • [10] Two-dimensional macroporous carbon: An ideal nodal-line semimetal with combined electronic and phononic topology
    Kong, Weixiang
    Xiao, Xiaoliang
    Wei, Juan
    Wang, Rui
    Wu, Xiaozhi
    APPLIED SURFACE SCIENCE, 2025, 688