Lempel–Ziv Factorization Powered by Space Efficient Suffix Trees

被引:0
|
作者
Johannes Fischer
Tomohiro I
Dominik Köppl
Kunihiko Sadakane
机构
[1] TU Dortmund,Department of Computer Science
[2] Department of Artificial Intelligence,Graduate School of Information Science and Technology
[3] Kyushu Institute of Technology,undefined
[4] University of Tokyo,undefined
来源
Algorithmica | 2018年 / 80卷
关键词
Lempel–Ziv; Lossless compression; Succinct suffix trees;
D O I
暂无
中图分类号
学科分类号
摘要
We show that both the Lempel–Ziv-77 and the Lempel–Ziv-78 factorization of a text of length n on an integer alphabet of size σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} can be computed in On\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathop {}\mathopen {}\mathcal {O}\mathopen {}\left( n\right) $$\end{document} time with either Onlgσ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathop {}\mathopen {}\mathcal {O}\mathopen {}\left( n \lg \sigma \right) $$\end{document} bits of working space, or (1+ϵ)nlgn+On\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+\epsilon ) n \lg n + \mathop {}\mathopen {}\mathcal {O}\mathopen {}\left( n\right) $$\end{document} bits (for a constant ϵ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon >0$$\end{document}) of working space (including the space for the output, but not the text).
引用
收藏
页码:2048 / 2081
页数:33
相关论文
共 50 条
  • [1] Lempel-Ziv Factorization Powered by Space Efficient Suffix Trees
    Fischer, Johannes
    Tomohiro, I
    Koeppl, Dominik
    Sadakane, Kunihiko
    [J]. ALGORITHMICA, 2018, 80 (07) : 2048 - 2081
  • [2] Reversed Lempel-Ziv Factorization with Suffix Trees
    Koppl, Dominik
    [J]. ALGORITHMS, 2021, 14 (06)
  • [3] Space Efficient Linear Time Lempel-Ziv Factorization for Small Alphabets
    Goto, Keisuke
    Bannai, Hideo
    [J]. 2014 DATA COMPRESSION CONFERENCE (DCC 2014), 2014, : 163 - 172
  • [4] Fast Online Lempel-Ziv Factorization in Compressed Space
    Policriti, Alberto
    Prezza, Nicola
    [J]. STRING PROCESSING AND INFORMATION RETRIEVAL (SPIRE 2015), 2015, 9309 : 13 - 20
  • [5] Lempel-Ziv Factorization Using Less Time & Space
    Chen, Gang
    Puglisi, Simon J.
    Smyth, W. F.
    [J]. MATHEMATICS IN COMPUTER SCIENCE, 2008, 1 (04) : 605 - 623
  • [6] Lempel-Ziv Factorization Revisited
    Ohlebusch, Enno
    Gog, Simon
    [J]. COMBINATORIAL PATTERN MATCHING, 22ND ANNUAL SYMPOSIUM, CPM 2011, 2011, 6661 : 15 - 26
  • [7] Simpler and Faster Lempel Ziv Factorization
    Goto, Keisuke
    Bannai, Hideo
    [J]. 2013 DATA COMPRESSION CONFERENCE (DCC), 2013, : 133 - 142
  • [8] Space efficient suffix trees
    Munro, I
    Raman, V
    Rao, SS
    [J]. FOUNDATIONS OF SOFTWARE TECHNOLOGY AND THEORETICAL COMPUTER SCIENCE, 1998, 1530 : 186 - 196
  • [9] Space efficient suffix trees
    Munro, JL
    Raman, V
    Rao, SS
    [J]. JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 2001, 39 (02): : 205 - 222
  • [10] Computing Lempel-Ziv Factorization Online
    Starikovskaya, Tatiana
    [J]. MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2012, 2012, 7464 : 789 - 799