Lempel-Ziv Factorization Using Less Time & Space

被引:22
|
作者
Chen, Gang [1 ]
Puglisi, Simon J. [2 ]
Smyth, W. F. [3 ]
机构
[1] McMaster Univ, Dept Comp & Software, Hamilton, ON L8S 4K1, Canada
[2] RMIT Univ, Sch Comp Sci & Informat Technol, Melbourne, Vic 3001, Australia
[3] Curtin Univ Technol, Digital Ecosyst & Business Intelligence Inst, Perth, WA 6845, Australia
关键词
Lempel-Ziv factorization; suffix array; suffix tree; LZ factorization;
D O I
10.1007/s11786-007-0024-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For 30 years the Lempel-Ziv factorization LZx of a string x = x[ 1.. n] has been a fundamental data structure of string processing, especially valuable for string compression and for computing all the repetitions (runs) in x. Traditionally the standard method for computing LZx was based on Theta(n)-time (or, depending on the measure used, O(n log n)-time) processing of the suffix tree STx of x. Recently Abouelhoda et al. proposed an efficient Lempel-Ziv factorization algorithm based on an "enhanced" suffix array that is, a suffix array SAx together with supporting data structures, principally an "interval tree". In this paper we introduce a collection of fast spaceefficient algorithms for LZ factorization, also based on suffix arrays, that in theory as well as in many practical circumstances are superior to those previously proposed; one family out of this collection achieves true T(n)-time alphabet-independent processing in the worst case by avoiding tree structures altogether.
引用
收藏
页码:605 / 623
页数:19
相关论文
共 50 条
  • [1] Lempel-Ziv Factorization Revisited
    Ohlebusch, Enno
    Gog, Simon
    [J]. COMBINATORIAL PATTERN MATCHING, 22ND ANNUAL SYMPOSIUM, CPM 2011, 2011, 6661 : 15 - 26
  • [2] Space Efficient Linear Time Lempel-Ziv Factorization for Small Alphabets
    Goto, Keisuke
    Bannai, Hideo
    [J]. 2014 DATA COMPRESSION CONFERENCE (DCC 2014), 2014, : 163 - 172
  • [3] Fast Online Lempel-Ziv Factorization in Compressed Space
    Policriti, Alberto
    Prezza, Nicola
    [J]. STRING PROCESSING AND INFORMATION RETRIEVAL (SPIRE 2015), 2015, 9309 : 13 - 20
  • [4] Computing Lempel-Ziv Factorization Online
    Starikovskaya, Tatiana
    [J]. MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2012, 2012, 7464 : 789 - 799
  • [5] Practical Parallel Lempel-Ziv Factorization
    Shun, Julian
    Zhao, Fuyao
    [J]. 2013 DATA COMPRESSION CONFERENCE (DCC), 2013, : 123 - 132
  • [6] Lempel-Ziv Factorization Powered by Space Efficient Suffix Trees
    Fischer, Johannes
    Tomohiro, I
    Koeppl, Dominik
    Sadakane, Kunihiko
    [J]. ALGORITHMICA, 2018, 80 (07) : 2048 - 2081
  • [7] Linear Time Lempel-Ziv Factorization: Simple, Fast, Small
    Karkkainen, Juha
    Kempa, Dominik
    Puglisi, Simon J.
    [J]. COMBINATORIAL PATTERN MATCHING, 2013, 7922 : 189 - 200
  • [8] Lempel-Ziv dimension for Lempel-Ziv compression
    Lopez-Valdes, Maria
    [J]. MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2006, PROCEEDINGS, 2006, 4162 : 693 - 703
  • [9] Sublinear Time Lempel-Ziv (LZ77) Factorization
    Ellert, Jonas
    [J]. STRING PROCESSING AND INFORMATION RETRIEVAL, SPIRE 2023, 2023, 14240 : 171 - 187
  • [10] Reversed Lempel-Ziv Factorization with Suffix Trees
    Koppl, Dominik
    [J]. ALGORITHMS, 2021, 14 (06)