Moore–Penrose Inverse of the Signless Laplacians of Bipartite Graphs

被引:0
|
作者
Abdullah Alazemi
Osama Alhalabi
Milica Anđelić
机构
[1] Kuwait University,Department of Mathematics
[2] Kuwait University,College of Graduate Studies
关键词
Moore–Penrose inverse; Incidence matrix; Signless Laplacian matrix; Laplacian matrix; 05C50; 15A09;
D O I
暂无
中图分类号
学科分类号
摘要
We provide a relation between the Moore–Penrose inverse of the Laplacian and signless Laplacian matrices of a bipartite graph. As a consequence, we obtain combinatorial formulae for the Moore–Penrose inverse of signless Laplacians of bipartite graphs. We also provide a combinatorial formula for the Moore–Penrose inverse of an incidence matrix of any graph. In this way, we answer some of open problems raised in Hessert and Mallik (Discrete Math 344:112451, 2021).
引用
收藏
相关论文
共 50 条
  • [31] On the Moore-Penrose inverse of a sum of matrices
    Baksalary, Oskar Maria
    Sivakumar, K. C.
    Trenkler, Goetz
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (02): : 133 - 149
  • [32] Moore-Penrose inverse in rings with involution
    Koliha, J. J.
    Djordjevic, Dragan
    Cvetkovic, Dragana
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 426 (2-3) : 371 - 381
  • [33] ITERATIVE COMPUTATION OF MOORE-PENROSE INVERSE
    ZLOBEC, S
    BENISRAE.A
    NIQUET, JJ
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (05): : A595 - &
  • [34] A note on the convexity of the Moore-Penrose inverse
    Nordstrom, Kenneth
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 538 : 143 - 148
  • [35] The moore-penrose inverse of a free matrix
    Britz, Thomas
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2007, 16 : 208 - 215
  • [36] NEW REPRESENTATIONS FOR THE MOORE-PENROSE INVERSE
    Wang, Hongxing
    Wei, Musheng
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2011, 22 : 720 - 728
  • [37] The generalized weighted Moore-Penrose inverse
    Sheng X.
    Chen G.
    Journal of Applied Mathematics and Computing, 2007, 25 (1-2) : 407 - 413
  • [38] NOTE ON AN EXTENSION OF THE MOORE-PENROSE INVERSE
    CLINE, RE
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1981, 40 (OCT) : 19 - 23
  • [39] On the perturbation of the Moore-Penrose inverse of a matrix
    Xu, Xuefeng
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 374 (374)
  • [40] Weighted generalized Moore-Penrose inverse
    Mosic, Dijana
    GEORGIAN MATHEMATICAL JOURNAL, 2023, 30 (06) : 919 - 932