Poisson vertex algebras in the theory of Hamiltonian equations

被引:0
|
作者
Aliaa Barakat
Alberto De Sole
Victor G. Kac
机构
[1] MIT,Department of Mathematics
[2] Università di Roma “La Sapienza” Città Universitaria,Dipartimento di Matematica
来源
关键词
evolution equation; evolutionary vector field; local functional; integral of motion; integrable hierarchy; normal algebra of differential functions; Lie conformal algebra; Poisson vertex algebra; compatible λ -brackets; Lenard scheme; Beltrami λ -bracket; variational derivative; Fréchet derivative; variational complex; Dirac structure; compatible Dirac structures; 17B80;
D O I
暂无
中图分类号
学科分类号
摘要
We lay down the foundations of the theory of Poisson vertex algebras aimed at its applications to integrability of Hamiltonian partial differential equations. Such an equation is called integrable if it can be included in an infinite hierarchy of compatible Hamiltonian equations, which admit an infinite sequence of linearly independent integrals of motion in involution. The construction of a hierarchy and its integrals of motion is achieved by making use of the so called Lenard scheme. We find simple conditions which guarantee that the scheme produces an infinite sequence of closed 1-forms \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega_j, j \in {\mathbb {Z}}_+$$\end{document}, of the variational complex Ω. If these forms are exact, i.e., ωj are variational derivatives of some local functionals ∫ hj, then the latter are integrals of motion in involution of the hierarchy formed by the corresponding Hamiltonian vector fields. We show that the complex Ω is exact, provided that the algebra of functions is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\fancyscript {V}$$\end{document} is “normal”; in particular, for arbitrary \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\fancyscript {V}$$\end{document}, any closed form in Ω becomes exact if we add to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\fancyscript {V}$$\end{document} a finite number of antiderivatives. We demonstrate on the examples of the KdV, HD and CNW hierarchies how the Lenard scheme works. We also discover a new integrable hierarchy, which we call the CNW hierarchy of HD type. Developing the ideas of Dorfman, we extend the Lenard scheme to arbitrary Dirac structures, and demonstrate its applicability on the examples of the NLS, pKdV and KN hierarchies.
引用
收藏
页码:141 / 252
页数:111
相关论文
共 50 条
  • [21] Infinitesimal Poisson algebras and linearization of Hamiltonian systems
    Ruiz-Pantaleon, J. C.
    Garcia-Beltran, D.
    Vorobiev, Yu.
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2020, 58 (04) : 415 - 431
  • [22] Infinitesimal Poisson algebras and linearization of Hamiltonian systems
    J. C. Ruíz-Pantaleón
    D. García-Beltrán
    Yu. Vorobiev
    Annals of Global Analysis and Geometry, 2020, 58 : 415 - 431
  • [23] Computation of cohomology of Lie conformal and Poisson vertex algebras
    Bojko Bakalov
    Alberto De Sole
    Victor G. Kac
    Selecta Mathematica, 2020, 26
  • [24] Computation of cohomology of Lie conformal and Poisson vertex algebras
    Bakalov, Bojko
    De Sole, Alberto
    Kac, Victor G.
    SELECTA MATHEMATICA-NEW SERIES, 2020, 26 (04):
  • [25] Poisson and Hamiltonian superpairs over polarized associative algebras
    Xu, XP
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (19): : 4241 - 4265
  • [26] Howe pairs in the theory of vertex algebras
    Lian, Bong H.
    Linshaw, Andrew R.
    JOURNAL OF ALGEBRA, 2007, 317 (01) : 111 - 152
  • [27] Sheaves of N=2 supersymmetric vertex algebras on Poisson manifolds
    Ekstrand, Joel
    Heluani, Reimundo
    Zabzine, Maxim
    JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (11) : 2259 - 2278
  • [28] Poisson Algebras and 3D Superintegrable Hamiltonian Systems
    Fordy, Allan P.
    Huang, Qing
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2018, 14
  • [29] Prolongation algebras and Hamiltonian operators for peakon equations
    Hone, ANW
    Wang, JP
    INVERSE PROBLEMS, 2003, 19 (01) : 129 - 145
  • [30] POISSON TRANSFORMS, JORDAN ALGEBRAS, AND HUA EQUATIONS
    LASSALLE, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1982, 294 (10): : 325 - 328