Gleason Parts and Closed Ideals in Douglas Algebras

被引:0
|
作者
Kei Ji Izuchi
Yuko Izuchi
机构
[1] Niigata University,Department of Mathematics
关键词
Gleason part; Closed ideal; Finitely generated ideal; Douglas algebra; Carleson–Newman Blaschke product; Gleason part; Primary 30H50; 30H05; 46J15; Secondary 30J10; 46J20;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, the study of the structure of closed ideals in H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{\infty }$$\end{document} whose zero sets are contained in G, the union set of non-trivial Gleason parts, has progressed remarkably. We generalize these results to closed ideals in Douglas algebras A. For non-zero functions f1,f2,…,fn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_1,f_2,\ldots ,f_n$$\end{document} in A, I=∑j=1nfjA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I=\sum ^n_{j=1}f_j A$$\end{document} is an ideal (may not be closed) in A. We also show that if I is closed in A and its common zero set is contained in G, then I=bA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I=b A$$\end{document} for a Carleson–Newman Blaschke product b.
引用
收藏
页码:243 / 263
页数:20
相关论文
共 50 条
  • [21] Non-closed sums of closed ideals in Banach algebras
    Dixon, PG
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (12) : 3647 - 3654
  • [22] Closed Ideals in Some Algebras of Analytic Functions
    Bouya, Brahim
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2009, 61 (02): : 282 - 298
  • [23] WEAKLY CLOSED IDEALS OF NEST-ALGEBRAS
    ERDOS, JA
    POWER, SC
    JOURNAL OF OPERATOR THEORY, 1982, 7 (02) : 219 - 235
  • [24] Topological algebras with maximal regular ideals closed
    Abel, Mati
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2012, 10 (03): : 1054 - 1059
  • [25] Closed ideals in analytic weighted Lipschitz algebras
    Bouya, Brahim
    ADVANCES IN MATHEMATICS, 2008, 219 (05) : 1446 - 1468
  • [26] Fuzzy closed ideals of bounded BE-algebras
    Tefera, Gerima
    Adem, Mohammed
    RESEARCH IN MATHEMATICS, 2023, 10 (01):
  • [27] Closed ideals of algebras of Beurling Analutics on the bidisc
    Bouya, B.
    El-Fallah, O.
    Kellay, K.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2010, 134 (06): : 588 - 604
  • [28] CLOSED PRINCIPAL IDEALS IN NONRADIAL HORMANDER ALGEBRAS
    MOMM, S
    ARCHIV DER MATHEMATIK, 1992, 58 (01) : 47 - 55
  • [29] CLOSED LIE IDEALS IN OPERATOR-ALGEBRAS
    MIERS, CR
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1981, 33 (05): : 1271 - 1278
  • [30] Weak*-closed Jordan ideals of nest algebras
    Oliveira, L
    MATHEMATISCHE NACHRICHTEN, 2003, 248 : 129 - 143