Genetic Diversity in Natural Populations of Arabidopsis thaliana (L.) Heynh. from Karelia

被引:0
|
作者
O. M. Fedorenko
A. I. Savushkin
G. S. Olimpienko
机构
[1] Institute of Biology,
[2] Karelian Research Center,undefined
[3] Russian Academy of Sciences,undefined
来源
关键词
Genetic Diversity; Plant Species; Total Diversity; Genetic Structure; Arabidopsis Thaliana;
D O I
暂无
中图分类号
学科分类号
摘要
The genetic structure of ten natural populations of Arabidopsis thaliana (L.) Heynh. at eight isozyme loci was studied. The populations were located in the northern part of the species range, 200 km from the north to the south along the Onega Lake coast in Karelia. Considerable genetic diversity (P99% = 43.7, Hobs = 0.003) was revealed that is not typical of populations of self-pollinating plant species. A direct correlation between the proportion of polymorphic loci and geographical latitude was shown (r = 0.68; P < 0.05). It is suggested that a high polymorphism level in Karelian Arabidopsis thaliana (L.) populations increasing from the south to the north is due to extreme environmental conditions in the northern part of the species range. The distribution of genetic diversity within and between populations is typical of self-pollinating species: the larger part of the total diversity resides among populations (GST = 0.583).
引用
收藏
页码:162 / 167
页数:5
相关论文
共 50 条
  • [21] Leaf Anatomical Structure in Arabidopsis thaliana (L.) Heynh. Mutants Deficient in Photoreceptors
    Vladimirovna, Demina Galina
    Petrovna, Yakushenkova Tatyana
    RESEARCH JOURNAL OF PHARMACEUTICAL BIOLOGICAL AND CHEMICAL SCIENCES, 2015, 6 (04): : 141 - 147
  • [22] Sodium transport by endocytic vesicles in cultured Arabidopsis thaliana (L.) Heynh. cells
    Yuliya V. Orlova
    Olga V. Sergienko
    Lyudmila A. Khalilova
    Alexander S. Voronkov
    Artem A. Fomenkov
    Alexander V. Nosov
    Larissa G. Popova
    Aleksei V. Shuvalov
    Anastasia V. Ryabova
    Yuri V. Balnokin
    In Vitro Cellular & Developmental Biology - Plant, 2019, 55 : 359 - 370
  • [23] Sodium transport by endocytic vesicles in cultured Arabidopsis thaliana (L.) Heynh. cells
    Orlova, Yuliya, V
    Sergienko, Olga, V
    Khalilova, Lyudmila A.
    Voronkov, Alexander S.
    Fomenkov, Artem A.
    Nosov, Alexander, V
    Popova, Larissa G.
    Shuvalov, Aleksei, V
    Ryabova, Anastasia, V
    Balnokin, Yuri, V
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-PLANT, 2019, 55 (04) : 359 - 370
  • [24] Genetic Effects of Low-Dose Chronic Irradiation of Developing Seeds of Arabidopsis thaliana (L.) Heynh.
    V. I. Abramov
    A. V. Rubanovich
    V. A. Shevchenko
    Russian Journal of Genetics, 2005, 41 : 1021 - 1027
  • [25] Participation of Endocytosis in Sodium Uptake by Cells of the Suspension Culture of Arabidopsis thaliana (L.) Heynh.
    Orlova, Y. V.
    Majorova, O. V.
    Khalilova, L. A.
    Voronkov, A. S.
    Fomenkov, A. A.
    Nosov, A. V.
    Popova, L. G.
    Balnokin, Y. V.
    BIOLOGICHESKIE MEMBRANY, 2018, 35 (04): : 309 - 317
  • [26] The NANA gene regulates division and elongation of stem cells in Arabidopsis thaliana (L.) Heynh.
    Ezhova, TA
    Soldatova, OP
    Sklyarova, OA
    RUSSIAN JOURNAL OF GENETICS, 2002, 38 (01) : 50 - 57
  • [27] Arab-1, a GDSL Lipase from the Model Plant, Arabidopsis thaliana (L.) Heynh.
    Mikleusevic, Goran
    Salopek-Sondi, Branka
    Luic, Marija
    CROATICA CHEMICA ACTA, 2009, 82 (02) : 439 - 447
  • [28] Crosstalk between ABA and auxin signaling pathways in roots of Arabidopsis thaliana (L.) Heynh.
    Christopher D. Rock
    Xin Sun
    Planta, 2005, 222 : 98 - 106
  • [29] The NANA Gene Regulates Division and Elongation of Stem Cells in Arabidopsis thaliana (L.) Heynh.
    T. A. Ezhova
    O. P. Soldatova
    O. A. Sklyarova
    Russian Journal of Genetics, 2002, 38 : 50 - 57
  • [30] pho3: a phosphorus-deficient mutant of Arabidopsis thaliana (L.) Heynh.
    Oksana V. Zakhleniuk
    Christine A. Raines
    Julie C. Lloyd
    Planta, 2001, 212 : 529 - 534