It is proved that for any f &esin; L2(Ω) the weak solution of the second biharmonic problem on a rectangle satisfies u&esin; H4(Ω). The proof uses the decomposition of the problem into two Poisson equations and a general condition for H4-regularity via the eigenvalues and eigenfunctions of second order elliptic operators.
机构:
Univ IBN TOFAIL, Fac Sci Kenitra, Dept Math & Informat, EGAL, Kenitra 14000, MoroccoUniv IBN TOFAIL, Fac Sci Kenitra, Dept Math & Informat, EGAL, Kenitra 14000, Morocco
机构:
S China Univ Technol, Dept Math, Guangzhou 510640, Guangdong, Peoples R ChinaS China Univ Technol, Dept Math, Guangzhou 510640, Guangdong, Peoples R China
Yan, Wei
Li, Yongsheng
论文数: 0引用数: 0
h-index: 0
机构:
S China Univ Technol, Dept Math, Guangzhou 510640, Guangdong, Peoples R ChinaS China Univ Technol, Dept Math, Guangzhou 510640, Guangdong, Peoples R China
Li, Yongsheng
Yang, Xingyu
论文数: 0引用数: 0
h-index: 0
机构:
S China Univ Technol, Sch Business Adm, Guangzhou 510640, Guangdong, Peoples R ChinaS China Univ Technol, Dept Math, Guangzhou 510640, Guangdong, Peoples R China