Diffusion in the Mean for an Ergodic Schrödinger Equation Perturbed by a Fluctuating Potential

被引:0
|
作者
Jeffrey Schenker
机构
[1] Michigan State University,Department of Mathematics
来源
关键词
Central Limit Theorem; Random Potential; Anderson Localization; Contraction Semigroup; Strong Operator Topology;
D O I
暂无
中图分类号
学科分类号
摘要
Diffusive scaling of position moments and a central limit theorem are obtained for the mean position of a quantum particle hopping on a cubic lattice and subject to a random potential consisting of a large static part and a small part that fluctuates stochastically in time. If the static random potential is strong enough to induce complete localization in the absence of time dependent noise, then the diffusion constant is shown to go to zero, proportional to the square of the strength of the time dependent part.
引用
收藏
页码:859 / 901
页数:42
相关论文
共 50 条
  • [21] Normalized Solutions to the Fractional Schrödinger Equation with Potential
    Jiabin Zuo
    Chungen Liu
    Calogero Vetro
    Mediterranean Journal of Mathematics, 2023, 20
  • [22] The mean field Schrödinger problem: ergodic behavior, entropy estimates and functional inequalities
    Julio Backhoff
    Giovanni Conforti
    Ivan Gentil
    Christian Léonard
    Probability Theory and Related Fields, 2020, 178 : 475 - 530
  • [23] Some remarks on the Schrödinger equation with a potential in LrtLsx
    Piero D' Ancona
    Vittoria Pierfelice
    Nicola Visciglia
    Mathematische Annalen, 2005, 333 : 271 - 290
  • [24] Exact solution of Schrödinger equation for Pseudoharmonic potential
    Ramazan Sever
    Cevdet Tezcan
    Metin Aktaş
    Özlem Yeşiltaş
    Journal of Mathematical Chemistry, 2008, 43 : 845 - 851
  • [25] Homoclinic orbits for a perturbed quintic-cubic nonlinear Schrdinger equation
    Boling GUO and Hanlin CHEN Institute of Applied Physics and Computational Mathematics
    Mianyang Normal College
    CommunicationsinNonlinearScience&NumericalSimulation, 2001, (04) : 227 - 230
  • [26] Weighted Strichartz Estimates for the Radial Perturbed Schrödinger Equation on the Hyperbolic Space
    Vittoria Pierfelice
    manuscripta mathematica, 2006, 120 : 377 - 389
  • [27] Homoclinic orbits for a perturbed quintic-cubic nonlinear Schrödinger equation
    Guo, Doling
    Chen, Hanlin
    Communications in Nonlinear Science and Numerical Simulation, 2001, 6 (04) : 227 - 230
  • [28] Optical dromions for perturbed fractional nonlinear Schrödinger equation with conformable derivatives
    S. T. R. Rizvi
    Aly R. Seadawy
    M. Younis
    N. Ahmad
    S. Zaman
    Optical and Quantum Electronics, 2021, 53
  • [29] Transformation Operator for the Schrödinger Equation with Additional Exponential Potential
    A. Kh. Khanmamedov
    M. F. Muradov
    Russian Mathematics, 2023, 67 : 68 - 75
  • [30] Exact solutions of the Schrödinger equation with a complex periodic potential
    Shi-Hai Dong
    Guo-Hua Sun
    Journal of Mathematical Chemistry, 2023, 61 : 1684 - 1695