p-adic interpolating function associated with Euler numbers

被引:0
|
作者
Taekyun Kim
Daeyeoul Kim
Ja Kyung Koo
机构
[1] Kyungpook National University Taegu,EECS
[2] National Institute for Mathematical Sciences Tajeon,Department of Mathematics
[3] KAIST,undefined
关键词
D O I
10.2991/jnmp.2007.14.2.7
中图分类号
学科分类号
摘要
In this paper, we investigate some relations between Bernoulli numbers and Frobenius-Euler numbers, and we study the values for p-adic l-function.
引用
收藏
页码:250 / 257
页数:7
相关论文
共 50 条
  • [31] On p-Adic Fermionic Integrals of q-Bernstein Polynomials Associated with q-Euler Numbers and Polynomials
    Jang, Lee-Chae
    Kim, Taekyun
    Kim, Dae San
    Dolgy, Dmitry Victorovich
    SYMMETRY-BASEL, 2018, 10 (08):
  • [32] Relaxed algorithms for p-adic numbers
    Berthomieu, Jeremy
    van der Hoeven, Joris
    Lecerf, Gregoire
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2011, 23 (03): : 541 - 577
  • [33] Algebraic independence of p-adic numbers
    Nesterenko, Yu. V.
    IZVESTIYA MATHEMATICS, 2008, 72 (03) : 565 - 579
  • [34] On p-adic valuations of Stirling numbers
    Miska, Piotr
    ACTA ARITHMETICA, 2018, 186 (04) : 337 - 348
  • [35] The p-adic Valuation of the ASM Numbers
    Beyerstedt, Erin
    Moll, Victor H.
    Sun, Xinyu
    JOURNAL OF INTEGER SEQUENCES, 2011, 14 (08)
  • [36] Heights and totally p-adic numbers
    Pottmeyer, Lukas
    ACTA ARITHMETICA, 2015, 171 (03) : 277 - 291
  • [37] P-ADIC TRANSCENDENTAL-NUMBERS
    NISHIOKA, K
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 108 (01) : 39 - 41
  • [38] On the p-adic valuation of harmonic numbers
    Sanna, Carlo
    JOURNAL OF NUMBER THEORY, 2016, 166 : 41 - 46
  • [39] Extended q-euler numbers and polynomials associated with fermionic p-adic q-integral on Zp
    T. Kim
    J. Y. Choi
    J. Y. Sug
    Russian Journal of Mathematical Physics, 2007, 14 : 160 - 163
  • [40] On a geometrical representation of p-adic numbers
    Mahler, K
    ANNALS OF MATHEMATICS, 1940, 41 : 8 - 56