Critical scattering and incommensurate phase transition in antiferroelectric PbZrO3 under pressure

被引:0
|
作者
R. G. Burkovsky
I. Bronwald
D. Andronikova
B. Wehinger
M. Krisch
J. Jacobs
D. Gambetti
K. Roleder
A. Majchrowski
A. V. Filimonov
A. I. Rudskoy
S. B. Vakhrushev
A. K. Tagantsev
机构
[1] Peter the Great Saint-Petersburg Polytechnic University,Department of Quantum Matter Physics
[2] Ioffe Institute,undefined
[3] University of Geneva,undefined
[4] Laboratory for Neutron Scattering and Imaging,undefined
[5] Paul Scherrer Institute,undefined
[6] European Synchrotron Radiation Facility,undefined
[7] BP 220,undefined
[8] Institute of Physics,undefined
[9] University of Silesia,undefined
[10] Institute of Applied Physics,undefined
[11] Military University of Technology,undefined
[12] Ceramics Laboratory,undefined
[13] Swiss Federal Institute of Technology (EPFL),undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Antiferroelectric lead zirconate is the key ingredient in modern ferroelectric and piezoelectric functional solid solutions. By itself it offers opportunities in new-type non-volatile memory and energy storage applications. A highly useful and scientifically puzzling feature of this material is the competition between the ferro- and antiferroelectric phases due to their energetic proximity, which leads to a challenge in understanding of the critical phenomena driving the formation of the antiferroelectric structure. We show that application of hydrostatic pressure drastically changes the character of critical lattice dynamics and enables the soft-mode-driven incommensurate phase transition sequence in lead zirconate. In addition to the long known cubic and antiferroelectric phases we identify the new non-modulated phase serving as a bridge between the cubic and the incommensurate phases. The pressure effect on ferroelectric and incommensurate critical dynamics shows that lead zirconate is not a single-instability-driven system.
引用
收藏
相关论文
共 50 条
  • [21] DIPOLE INTERACTIONS IN ANTIFERROELECTRIC PBZRO3
    KINASE, W
    YANO, K
    OHNISHI, N
    FERROELECTRICS, 1983, 46 (3-4) : 281 - 290
  • [22] STRUCTURE AND ENERGETICS OF ANTIFERROELECTRIC PBZRO3
    SINGH, DJ
    PHYSICAL REVIEW B, 1995, 52 (17): : 12559 - 12563
  • [23] ELECTROCALORIC EFFECTS IN ANTIFERROELECTRIC PBZRO3
    LAWLESS, WN
    FERROELECTRICS LETTERS SECTION, 1993, 15 (01) : 27 - 31
  • [24] Temperature dependence of order parameters in the antiferroelectric phase of PbZrO3
    Fujishita, H
    Katano, S
    FERROELECTRICS, 2000, 237 (1-4) : 513 - 520
  • [25] Ferrielectricity in the Archetypal Antiferroelectric, PbZrO3
    Yao, Yulian
    Naden, Aaron
    Tian, Mengkun
    Lisenkov, Sergey
    Beller, Zachary
    Kumar, Amit
    Kacher, Josh
    Ponomareva, Inna
    Bassiri-Gharb, Nazanin
    ADVANCED MATERIALS, 2023, 35 (03)
  • [26] Static and dynamic strain relaxation associated with the paraelectric-antiferroelectric phase transition in PbZrO3
    Carpenter, M. A.
    Salje, E. K. H.
    Costa, M. B.
    Majchrowski, A.
    Roleder, K.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 898
  • [27] Micro-Raman and dielectric phase transition studies in antiferroelectric PbZrO3 thin films
    Dobal, PS
    Katiyar, RS
    Bharadwaja, SSN
    Krupanidhi, SB
    APPLIED PHYSICS LETTERS, 2001, 78 (12) : 1730 - 1732
  • [28] First-principles study of the multimode antiferroelectric transition in PbZrO3
    Iniguez, Jorge
    Stengel, Massimiliano
    Prosandeev, Sergey
    Bellaiche, L.
    PHYSICAL REVIEW B, 2014, 90 (22)
  • [29] Polarity of translation boundaries in antiferroelectric PbZrO3
    Wei, Xian-Kui
    Jia, Chun-Lin
    Roleder, Krystian
    Setter, Nava
    MATERIALS RESEARCH BULLETIN, 2015, 62 : 101 - 105
  • [30] Negative electrocaloric effect in antiferroelectric PbZrO3
    Pirc, R.
    Rozic, B.
    Koruza, J.
    Malic, B.
    Kutnjak, Z.
    EPL, 2014, 107 (01)