Critical scattering and incommensurate phase transition in antiferroelectric PbZrO3 under pressure

被引:0
|
作者
R. G. Burkovsky
I. Bronwald
D. Andronikova
B. Wehinger
M. Krisch
J. Jacobs
D. Gambetti
K. Roleder
A. Majchrowski
A. V. Filimonov
A. I. Rudskoy
S. B. Vakhrushev
A. K. Tagantsev
机构
[1] Peter the Great Saint-Petersburg Polytechnic University,Department of Quantum Matter Physics
[2] Ioffe Institute,undefined
[3] University of Geneva,undefined
[4] Laboratory for Neutron Scattering and Imaging,undefined
[5] Paul Scherrer Institute,undefined
[6] European Synchrotron Radiation Facility,undefined
[7] BP 220,undefined
[8] Institute of Physics,undefined
[9] University of Silesia,undefined
[10] Institute of Applied Physics,undefined
[11] Military University of Technology,undefined
[12] Ceramics Laboratory,undefined
[13] Swiss Federal Institute of Technology (EPFL),undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Antiferroelectric lead zirconate is the key ingredient in modern ferroelectric and piezoelectric functional solid solutions. By itself it offers opportunities in new-type non-volatile memory and energy storage applications. A highly useful and scientifically puzzling feature of this material is the competition between the ferro- and antiferroelectric phases due to their energetic proximity, which leads to a challenge in understanding of the critical phenomena driving the formation of the antiferroelectric structure. We show that application of hydrostatic pressure drastically changes the character of critical lattice dynamics and enables the soft-mode-driven incommensurate phase transition sequence in lead zirconate. In addition to the long known cubic and antiferroelectric phases we identify the new non-modulated phase serving as a bridge between the cubic and the incommensurate phases. The pressure effect on ferroelectric and incommensurate critical dynamics shows that lead zirconate is not a single-instability-driven system.
引用
收藏
相关论文
共 50 条
  • [1] Critical scattering and incommensurate phase transition in antiferroelectric PbZrO3 under pressure
    Burkovsky, R. G.
    Bronwald, I.
    Andronikova, D.
    Wehinger, B.
    Krisch, M.
    Jacobs, J.
    Gambetti, D.
    Roleder, K.
    Majchrowski, A.
    Filimonov, A. V.
    Rudskoy, A. I.
    Vakhrushev, S. B.
    Tagantsev, A. K.
    SCIENTIFIC REPORTS, 2017, 7
  • [2] Thermodynamics of antiferroelectric phase transition in PbZrO3
    Fujishita, H
    Ishikawa, Y
    FERROELECTRICS, 2003, 283 : 75 - 86
  • [3] Antiferroelectric Phase Transition in PbZrO3 Nanoparticles
    Singh, Satyendra
    Krupanidhi, S. B.
    ADVANCED SCIENCE LETTERS, 2011, 4 (11-12) : 3599 - 3601
  • [4] Dynamics of antiferroelectric phase transition in PbZrO3
    Fthenakis, Z. G.
    Ponomareva, I.
    PHYSICAL REVIEW B, 2017, 96 (18)
  • [5] XAFS study of the antiferroelectric phase transition in PbZrO3
    Sicron, N
    Yacoby, Y
    Stern, EA
    Dogan, F
    JOURNAL DE PHYSIQUE IV, 1997, 7 (C2): : 1047 - 1049
  • [6] Antiferroelectric phase transition and order parameters of PbZrO3
    Fujishita, H
    Tanaka, S
    FERROELECTRICS, 2001, 258 (1-4) : 37 - 46
  • [7] PRESSURE AND TEMPERATURE DEPENDENCE OF DIELECTRIC PROPERTIES AND PHASE TRANSITION IN ANTIFERROELECTRIC PBZRO3
    SAMARA, GA
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1970, 15 (03): : 336 - &
  • [8] Order parameters in the structural phase transition of antiferroelectric PbZrO3
    Fujishita, H
    FERROELECTRICS, 2002, 266 : 27 - 40
  • [9] ISOTOPE EFFECT ON PBZRO3 ANTIFERROELECTRIC PHASE-TRANSITION
    HIDAKA, T
    OKA, K
    FERROELECTRICS, 1990, 108 : 171 - 176
  • [10] Anomalous properties of antiferroelectric PbZrO3 under hydrostatic pressure
    Prosandeev, S.
    Xu, Changsong
    Faye, R.
    Duan, Wenhui
    Liu, H.
    Dkhil, B.
    Janolin, P. -E.
    Iniguez, Jorge
    Bellaiche, L.
    PHYSICAL REVIEW B, 2014, 89 (21)