Experimental Investigation on the Effect of a Microsecond Pulse and a Nanosecond Pulse on NO Removal Using a Pulsed DBD with Catalytic Materials

被引:0
|
作者
V. R. Chirumamilla
W. F. L. M. Hoeben
F. J. C. M. Beckers
T. Huiskamp
E. J. M. Van Heesch
A. J. M. Pemen
机构
[1] Eindhoven University of Technology,Department of Electrical Engineering
来源
关键词
Non-thermal plasma; Dielectric barrier discharge; N; O; O; NO conversion;
D O I
暂无
中图分类号
学科分类号
摘要
In this study, an experimental investigation of the removal of NO from an atmospheric air stream has been carried out with a non-thermal plasma dielectric barrier discharge reactor filled with different catalytic materials. TiO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}, CuO–MnO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}–TiO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}, CuO–MnO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}–Al2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}O3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_3$$\end{document} catalysts were used to study the synergy between the plasma and the catalysts. The NOx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_\mathrm{{x}}$$\end{document} removal efficiency and by-products formation were studied as a function of energy density, pulse rise time and width using a plasma catalytic configuration. It was observed that the shorter pulses are more efficient for NOx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_\mathrm{{x}}$$\end{document} removal but at the expense of higher by-products formation such as N2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}O and O3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_3$$\end{document}. A comparison has been made between an in-plasma catalytic configuration and a post-plasma catalytic configuration. Among all the three catalysts that were studied, CuO–MnO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}–TiO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} catalyst showed the best performance with respect to the removal efficiency as well as the by-products formation in both the in-plasma and the post-plasma catalytic configuration. In general, the post-plasma configuration showed better results with respect to low by-products formation.
引用
收藏
页码:487 / 510
页数:23
相关论文
共 50 条
  • [41] Simulation and Experimental Study of Nanosecond Pulse Laser Removal of Epoxy Paint on 6061 Aluminum Alloy Surface
    Li, Yahui
    Li, Jingyi
    Dong, Hang
    Zhang, Wei
    Jin, Guangyong
    PHOTONICS, 2024, 11 (01)
  • [42] Investigation of wavelength effects on polycrystalline silicon damages using nanosecond pulse laser irradiation
    Xu, Jiangmin
    Chen, Mimi
    Liu, Zhiqiang
    Wang, Jia
    Liu, Liming
    Han, Zhenchun
    Xu, Haibo
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2019, 267 : 159 - 166
  • [43] Precision material removal and hardness reduction in silicon carbide using ultraviolet nanosecond pulse laser
    Tsai, Hsin-Yi
    Lin, Yu-Hsuan
    Huang, Kuo-Cheng
    Lee, Chen-Ju
    Yeh, J. Andrew
    Yang, Yi
    Ding, Chien-Fang
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2025, 131 (03):
  • [44] Experimental study of flow control on delta wings with different sweep angles using pulsed nanosecond DBD plasma actuators
    Zhao, Guang-yin
    Li, Ying-hong
    Hua, Wei-zhuo
    Liang, Hua
    Han, Meng-hu
    Niu, Zhong-guo
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2015, 229 (11) : 1966 - 1974
  • [45] Material micromachining using a pulsed fiber laser platform with fine temporal nanosecond pulse shaping capability
    Deladurantaye, Pascal
    Gay, David
    Cournoyer, Alain
    Roy, Vincent
    Labranche, Bruno
    Levesque, Marc
    Taillon, Yves
    FIBER LASERS VI: TECHNOLOGY, SYSTEMS, AND APPLICATIONS, 2009, 7195
  • [46] Experimental investigation of dynamic stall flow control using a microsecond-pulsed plasma actuator
    Xu, Zeyang
    Wu, Bin
    Gao, Chao
    Wang, Na
    Jia, Tianhao
    PLASMA SCIENCE & TECHNOLOGY, 2023, 25 (03)
  • [47] Experimental investigation of dynamic stall flow control using a microsecond-pulsed plasma actuator
    徐泽阳
    武斌
    高超
    王娜
    贾天昊
    Plasma Science and Technology, 2023, (03) : 218 - 228
  • [48] Experimental investigation of dynamic stall flow control using a microsecond-pulsed plasma actuator
    徐泽阳
    武斌
    高超
    王娜
    贾天昊
    Plasma Science and Technology, 2023, 25 (03) : 218 - 228
  • [49] OPTIMUM PULSE STRUCTURE FOR EFFECTIVE HAIR REMOVAL USING BROADBAND PULSED LIGHT SYSTEMS
    Town, Godfrey
    Ash, Caerwynn
    Donne, Kelvin
    Daniel, Gwenaelle
    Clement, Marc
    LASERS IN SURGERY AND MEDICINE, 2010, : 3 - 3
  • [50] Naphtha cracking through a pulsed DBD plasma reactor: Effect of applied voltage, pulse repetition frequency and electrode material
    Jahanmiri, A.
    Rahimpour, M. R.
    Shirazi, M. Mohamadzadeh
    Hooshmand, N.
    Taghvaei, H.
    CHEMICAL ENGINEERING JOURNAL, 2012, 191 : 416 - 425