Scaling Limits of Solutions of Linear Stochastic Differential Equations Driven by Lévy White Noises

被引:0
|
作者
Julien Fageot
Michael Unser
机构
[1] Biomedical Imaging Group,École polytechnique fédérale de Lausanne
来源
关键词
Lévy white noises; Linear SDE; Scaling limit; Self-similar processes; 60G18; 60G20; 60G51;
D O I
暂无
中图分类号
学科分类号
摘要
Consider a random process s that is a solution of the stochastic differential equation Ls=w\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {L}s = w$$\end{document} with L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {L}$$\end{document} a homogeneous operator and w a multidimensional Lévy white noise. In this paper, we study the asymptotic effect of zooming in or zooming out of the process s. More precisely, we give sufficient conditions on L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {L}$$\end{document} and w such that aHs(·/a)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a^H s(\cdot / a)$$\end{document} converges in law to a non-trivial self-similar process for some H, when a→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a \rightarrow 0$$\end{document} (coarse-scale behavior) or a→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a \rightarrow \infty $$\end{document} (fine-scale behavior). The parameter H depends on the homogeneity order of the operator L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {L}$$\end{document} and the Blumenthal–Getoor and Pruitt indices associated with the Lévy white noise w. Finally, we apply our general results to several famous classes of random processes and random fields and illustrate our results on simulations of Lévy processes.
引用
收藏
页码:1166 / 1189
页数:23
相关论文
共 50 条
  • [31] Correction to: Multilevel particle filters for Lévy-driven stochastic differential equations
    Ajay Jasra
    Kody J. H. Law
    Prince Peprah Osei
    Statistics and Computing, 2019, 29 : 851 - 851
  • [32] Ergodic Control for Lévy-Driven Linear Stochastic Equations in Hilbert Spaces
    K. Kadlec
    B. Maslowski
    Applied Mathematics & Optimization, 2019, 79 : 547 - 565
  • [33] Non-confluence of fractional stochastic differential equations driven by Lévy process
    Li, Zhi
    Feng, Tianquan
    Xu, Liping
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2024, 27 (03) : 1414 - 1427
  • [34] An optimization approach to weak approximation of lévy-driven stochastic differential equations
    Kashima K.
    Kawai R.
    Lecture Notes in Control and Information Sciences, 2010, 398 : 263 - 272
  • [35] Local linear estimator for stochastic diferential equations driven by α-stable Lvy motions
    LIN ZhengYan
    SONG YuPing
    YI JiangSheng
    Science China(Mathematics), 2014, 57 (03) : 609 - 626
  • [36] On the modelling of stochastic differential equations subject to squared white noises
    Universite du Quebec a Montreal, Montreal, Canada
    Syst Anal Modell Simul, 3-4 (169-175):
  • [37] Learning Fractional White Noises in Neural Stochastic Differential Equations
    Tong, Anh
    Nguyen-Tang, Thanh
    Tran, Toan
    Choi, Jaesik
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [38] Large deviations for locally monotone stochastic partial differential equations driven by Lévy noise
    Wu, Weina
    Zhai, Jianliang
    Zhu, Jiahui
    arXiv,
  • [39] Path integration method for stochastic responses of differential equations under Lévy white noise
    Peng, Jiahui
    Wang, Liang
    Wang, Bochen
    Xu, Wei
    PHYSICAL REVIEW E, 2024, 109 (02)
  • [40] Generalized Backward Doubly Stochastic Differential Equations Driven by Lévy Processes with Continuous Coefficients
    Auguste AMAN
    Jean Marc OWO
    Acta Mathematica Sinica,English Series, 2012, (10) : 2011 - 2020