Twisted Ways to Find Plane Structures in Simple Drawings of Complete Graphs

被引:0
|
作者
Oswin Aichholzer
Alfredo García
Javier Tejel
Birgit Vogtenhuber
Alexandra Weinberger
机构
[1] Graz University of Technology,Institute of Software Technology
[2] Universidad de Zaragoza,Departamento de Métodos Estadísticos and IUMA
关键词
Simple drawings; Simple topological graphs; Disjoint edges; Plane matching; Plane path; 05C10; 05C38; 05C62;
D O I
暂无
中图分类号
学科分类号
摘要
Simple drawings are drawings of graphs in which the edges are Jordan arcs and each pair of edges share at most one point (a proper crossing or a common endpoint). A simple drawing is c-monotone if there is a point O such that each ray emanating from O crosses each edge of the drawing at most once. We introduce a special kind of c-monotone drawings that we call generalized twisted drawings. A c-monotone drawing is generalized twisted if there is a ray emanating from O that crosses all the edges of the drawing. Via this class of drawings, we show that every simple drawing of the complete graph with n vertices contains Ω(n12)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (n^{\frac{1}{2}})$$\end{document} pairwise disjoint edges and a plane cycle (and hence path) of length Ω(lognloglogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (\frac{\log n }{\log \log n})$$\end{document}. Both results improve over best previously published lower bounds. On the way we show several structural results and properties of generalized twisted and c-monotone drawings, some of which we believe to be of independent interest. For example, we show that a drawing D is c-monotone if there exists a point O such that no edge of D is crossed more than once by any ray that emanates from O and passes through a vertex of D.
引用
收藏
页码:40 / 66
页数:26
相关论文
共 50 条
  • [41] Grid drawings of four-connected plane graphs
    Miura, K
    Nakano, S
    Nishizeki, T
    GRAPH DRAWING, 1999, 1731 : 145 - 154
  • [42] Convex drawings of 3-connected plane graphs
    Bonichon, Nicolas
    Felsner, Stefan
    Mosbah, Mohamed
    ALGORITHMICA, 2007, 47 (04) : 399 - 420
  • [43] Convex grid drawings of plane graphs with rectangular contours
    Faculty of Symbiotic Systems Science, Fukushima University, Fukushima 960-1296, Japan
    不详
    J. Graph Algorithms and Appl., 2008, 2 (197-224):
  • [44] Convex drawings of plane graphs of minimum outer apices
    Miura, K
    Azuma, M
    Nishizeki, T
    GRAPH DRAWING, 2006, 3843 : 297 - 308
  • [45] Orthogonal drawings for plane graphs with specified face areas
    Kawaguchi, Akifumi
    Nagamochi, Hiroshi
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, PROCEEDINGS, 2007, 4484 : 584 - +
  • [46] Mutual witness Gabriel drawings of complete bipartite graphs
    Lenhart, William J.
    Liotta, Giuseppe
    THEORETICAL COMPUTER SCIENCE, 2023, 974
  • [47] Drawings of Complete Multipartite Graphs up to Triangle Flips
    Aichholzer, Oswin
    Chiu, Man-Kwun
    Hoang, Hung P.
    Hoffmann, Michael
    Kynčl, Jan
    Maus, Yannic
    Vogtenhuber, Birgit
    Weinberger, Alexandra
    Leibniz International Proceedings in Informatics, LIPIcs, 2023, 258
  • [48] Mutual Witness Gabriel Drawings of Complete Bipartite Graphs
    Lenhart, William J.
    Liotta, Giuseppe
    GRAPH DRAWING AND NETWORK VISUALIZATION, GD 2022, 2023, 13764 : 25 - 39
  • [49] Mutual Witness Gabriel Drawings of Complete Bipartite Graphs
    Lenhart, William J.
    Liotta, Giuseppe
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2023, 13764 LNCS : 25 - 39
  • [50] Mutual Witness Gabriel Drawings of Complete Bipartite Graphs ⋆
    Liotta, Giuseppe
    Lenhart, William J.
    SSRN, 2022,