Twisted Ways to Find Plane Structures in Simple Drawings of Complete Graphs

被引:0
|
作者
Oswin Aichholzer
Alfredo García
Javier Tejel
Birgit Vogtenhuber
Alexandra Weinberger
机构
[1] Graz University of Technology,Institute of Software Technology
[2] Universidad de Zaragoza,Departamento de Métodos Estadísticos and IUMA
关键词
Simple drawings; Simple topological graphs; Disjoint edges; Plane matching; Plane path; 05C10; 05C38; 05C62;
D O I
暂无
中图分类号
学科分类号
摘要
Simple drawings are drawings of graphs in which the edges are Jordan arcs and each pair of edges share at most one point (a proper crossing or a common endpoint). A simple drawing is c-monotone if there is a point O such that each ray emanating from O crosses each edge of the drawing at most once. We introduce a special kind of c-monotone drawings that we call generalized twisted drawings. A c-monotone drawing is generalized twisted if there is a ray emanating from O that crosses all the edges of the drawing. Via this class of drawings, we show that every simple drawing of the complete graph with n vertices contains Ω(n12)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (n^{\frac{1}{2}})$$\end{document} pairwise disjoint edges and a plane cycle (and hence path) of length Ω(lognloglogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (\frac{\log n }{\log \log n})$$\end{document}. Both results improve over best previously published lower bounds. On the way we show several structural results and properties of generalized twisted and c-monotone drawings, some of which we believe to be of independent interest. For example, we show that a drawing D is c-monotone if there exists a point O such that no edge of D is crossed more than once by any ray that emanates from O and passes through a vertex of D.
引用
收藏
页码:40 / 66
页数:26
相关论文
共 50 条
  • [1] Twisted Ways to Find Plane Structures in Simple Drawings of Complete Graphs
    Aichholzer, Oswin
    Garcia, Alfredo
    Tejel, Javier
    Vogtenhuber, Birgit
    Weinberger, Alexandra
    DISCRETE & COMPUTATIONAL GEOMETRY, 2024, 71 (01) : 40 - 66
  • [2] Drawings of complete graphs in the projective plane
    Arroyo, Alan
    McQuillan, Dan
    Richter, R. Bruce
    Salazar, Gelasio
    Sullivan, Matthew
    JOURNAL OF GRAPH THEORY, 2021, 97 (03) : 426 - 440
  • [3] Planar drawings of plane graphs
    Nakano, S
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2000, E83D (03) : 384 - 391
  • [4] A simple linear time algorithm for proper box rectangular drawings of plane graphs
    He, X
    JOURNAL OF ALGORITHMS, 2001, 40 (01) : 82 - 101
  • [5] A simple linear time algorithm for proper box rectangular drawings of plane graphs
    He, X
    ALGORITHMS AND DATA STRUCTURES, 2001, 2125 : 234 - 245
  • [6] Inner rectangular drawings of plane graphs
    Miura, K
    Haga, H
    Nishizeki, T
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2006, 16 (2-3) : 249 - 270
  • [7] Plane Drawings of Queue and Deque Graphs
    Auer, Christopher
    Bachmaier, Christian
    Brandenburg, Franz Josef
    Brunner, Wolfgang
    Gleissner, Andreas
    GRAPH DRAWING, 2011, 6502 : 68 - 79
  • [8] Plane integral drawings of planar graphs
    Kemnitz, A
    Harborth, H
    DISCRETE MATHEMATICS, 2001, 236 (1-3) : 191 - 195
  • [9] Rectangular grid drawings of plane graphs
    Rahman, MS
    Nakano, S
    Nishizeki, T
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1998, 10 (03): : 203 - 220
  • [10] On orthogonally convex drawings of plane graphs
    Chang, Yi-Jun
    Yen, Hsu-Chun
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2017, 62 : 34 - 51