A novel approach for pre-filtering event sources using the von Mises–Fisher distribution

被引:0
|
作者
D. Costantin
G. Menardi
A. R. Brazzale
D. Bastieri
J. H. Fan
机构
[1] Guangzhou University,Center for Astrophysics
[2] Astronomy Science and Technology Research Laboratory of Education of Guangdong Province,Department of Statistical Sciences
[3] University of Padova,Department of Physics and Astronomy “G. Galilei”
[4] University of Padua,Padua Division
[5] National Institute for Nuclear Physics,undefined
来源
关键词
Astrostatistics; Finite mixture; High energy photon; von Mises-Fisher distribution;
D O I
暂无
中图分类号
学科分类号
摘要
Searching for as yet undetected γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma $\end{document}-ray sources is one of the main stated goals of the Fermi Large Area Telescope Collaboration. In this paper, we explore the capability of a filtering method based on a finite mixture of von Mises–Fisher distributions. The proposed procedure is specifically designed to handle data with support on the unit sphere. The assumption of a parametric model for each high energy emitting source allows us to derive an explicit expression for both the direction of the sources and their angular resolutions. The corresponding measures are based on the directional mean and the quantiles of the single mixture components. Sound criteria of model selection can provide an automatic way to determine the number of detected sources. Additionally, a likelihood-ratio test is developed to evaluate their significance. The procedure is tested on simulated data sets of photon emissions from high energy sources within the energy range [10−1,000] GeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$[10 - 1,000]\text{ GeV}$\end{document}. A real data example consisting of a sample of the Fermi LAT data collected over a period of about 7.2 years within the energy range [10−1,000] GeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$[10 - 1,000]\text{ GeV}$\end{document}, in a subregion of the γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma $\end{document}-ray sky, is furthermore provided.
引用
收藏
相关论文
共 50 条
  • [1] A novel approach for pre-filtering event sources using the von Mises-Fisher distribution
    Costantin, D.
    Menardi, G.
    Brazzale, A. R.
    Bastieri, D.
    Fan, J. H.
    ASTROPHYSICS AND SPACE SCIENCE, 2020, 365 (03)
  • [2] Unscented von Mises-Fisher Filtering
    Kurz, Gerhard
    Gilitschenski, Igor
    Hanebeck, Uwe D.
    IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (04) : 463 - 467
  • [3] Novel sampling method for the von Mises-Fisher distribution
    Kang, Seungwoo
    Oh, Hee-Seok
    STATISTICS AND COMPUTING, 2024, 34 (03)
  • [4] Cooperative Heading Estimation with von Mises-Fisher Distribution and Particle Filtering
    Makela, Maija
    Kirkko-Jaakkola, Martti
    Hammarberg, Toni
    Malkamaki, Tuomo
    Rantanen, Jesperi
    Kaasalainen, Sanna
    2022 25TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2022), 2022,
  • [5] Score matching based assumed density filtering with the von Mises-Fisher distribution
    Bukal, Mario
    Markovic, Ivan
    Petrovic, Ivan
    2017 20TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2017, : 433 - 438
  • [6] Von Mises-Fisher Elliptical Distribution
    Li, Shengxi
    Mandic, Danilo
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (12) : 11006 - 11012
  • [7] Modeling of Epileptic Seizures Using the Von Mises-Fisher Distribution
    Ramachandran, Vinod
    Ahmad, Tahir
    PROCEEDINGS OF THE 24TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM24): MATHEMATICAL SCIENCES EXPLORATION FOR THE UNIVERSAL PRESERVATION, 2017, 1870
  • [8] Probabilistic fiber tacking using particle filtering and von Mises-Fisher sampling
    Zhang, Fan
    Goodlett, Casey
    Hancock, Edwin
    Gerig, Guido
    ENERGY MINIMIZATION METHODS IN COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, 2007, 4679 : 303 - +
  • [10] VON MISES FISHER MATRIX DISTRIBUTION IN ORIENTATION STATISTICS
    KHATRI, CG
    MARDIA, KV
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01): : 95 - 106