Probabilistic fiber tacking using particle filtering and von Mises-Fisher sampling

被引:0
|
作者
Zhang, Fan [1 ]
Goodlett, Casey [2 ]
Hancock, Edwin [1 ]
Gerig, Guido [2 ]
机构
[1] Univ York, Dept Comp Sci, York YO10 5DD, N Yorkshire, England
[2] Univ N Carolina Chapell Hill, Dept Comp Sci, Chapel Hill, NC 27599 USA
来源
ENERGY MINIMIZATION METHODS IN COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS | 2007年 / 4679卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel and fast probabilistic method for white matter fiber tracking from diffusion weighted magnetic resonance imaging (DWI). We formulate fiber tracking on a nonlinear state space model which is able to capture both smoothness regularity of fibers and uncertainties of the local fiber orientations due to noise and partial volume effects. The global tracking model is implemented using particle filtering. This sequential Monte Carlo technique allows us to recursively compute the posterior distribution of the potential fibers, while there is no limitation on the forms of the prior and observed information. Fast and efficient sampling is realised using the von Mises-Fisher distribution on unit spheres. The fiber orientation distribution is theoretically formulated by combining the axially symmetric tensor model and the formal noise model for DWI. Given a seed point, the method is able to rapidly locate the global optimal fiber and also provide a connectivity map. The proposed method is demonstrated both on synthetic and real-world brain MRI dataset.
引用
收藏
页码:303 / +
页数:2
相关论文
共 50 条
  • [1] Probabilistic white matter fiber tracking using particle filtering and von Mises-Fisher sampling
    Zhang, Fan
    Hancock, Edwin R.
    Goodlett, Casey
    Gerig, Guido
    MEDICAL IMAGE ANALYSIS, 2009, 13 (01) : 5 - 18
  • [2] Unscented von Mises-Fisher Filtering
    Kurz, Gerhard
    Gilitschenski, Igor
    Hanebeck, Uwe D.
    IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (04) : 463 - 467
  • [3] Nonlinear von Mises-Fisher Filtering Based on Isotropic Deterministic Sampling
    Li, Kailai
    Pfaff, Florian
    Hanebeck, Uwe D.
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTISENSOR FUSION AND INTEGRATION FOR INTELLIGENT SYSTEMS (MFI), 2020, : 108 - 113
  • [4] Cooperative Heading Estimation with von Mises-Fisher Distribution and Particle Filtering
    Makela, Maija
    Kirkko-Jaakkola, Martti
    Hammarberg, Toni
    Malkamaki, Tuomo
    Rantanen, Jesperi
    Kaasalainen, Sanna
    2022 25TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2022), 2022,
  • [5] Novel sampling method for the von Mises-Fisher distribution
    Kang, Seungwoo
    Oh, Hee-Seok
    STATISTICS AND COMPUTING, 2024, 34 (03)
  • [6] Von Mises-Fisher Clustering Models
    Gopal, Siddharth
    Yang, Yiming
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 1), 2014, 32
  • [7] Von Mises-Fisher Elliptical Distribution
    Li, Shengxi
    Mandic, Danilo
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (12) : 11006 - 11012
  • [8] Outdoor Human Motion Capture using Inverse Kinematics and von Mises-Fisher Sampling
    Pons-Moll, Gerard
    Baak, Andreas
    Gall, Juergen
    Leal-Taixe, Laura
    Mueller, Meinard
    Seidel, Hans-Peter
    Rosenhahn, Bodo
    2011 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2011, : 1243 - 1250
  • [9] A novel approach for pre-filtering event sources using the von Mises-Fisher distribution
    Costantin, D.
    Menardi, G.
    Brazzale, A. R.
    Bastieri, D.
    Fan, J. H.
    ASTROPHYSICS AND SPACE SCIENCE, 2020, 365 (03)
  • [10] Joint Calibration of Inertial Sensors and Magnetometers using von Mises-Fisher Filtering and Expectation Maximization
    Hostettler, Roland
    Garcia-Fernandez, Angel F.
    Tronarp, Filip
    Sarkka, Simo
    2019 22ND INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2019), 2019,