共 21 条
Subalgebra lattices of totally reflexive sub-preprimal algebras
被引:0
|作者:
Passawan Noppakaew
Worakrit Supaporn
机构:
[1] Silpakorn University,Department of Mathematics, Faculty of Science
来源:
关键词:
Maximal clones;
Subalgebras;
Lattices;
Categorical equivalence of clones;
Varieties;
08A40;
08A30;
06B23;
18B99;
08B15;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
For a set Q of relations on a finite set A, the set PolAQ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm{Pol}_{A}Q$$\end{document}, of all operations on A preserving all relations in Q, is a clone. The set of all clones on a given set forms a lattice under inclusion. Each of its maximal elements can be represented as PolA{ρ}\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm{Pol}_{A}\{\rho \}$$\end{document} where ρ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\rho $$\end{document} is one of the six types of relations determined by Ivo G. Rosenberg. Four types of them are totally reflexive. These relations are bounded orders, non-trivial equivalence relations, central relations, and universal relations. An algebra A̲\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\underline{A}$$\end{document} is said to be totally reflexive sub-preprimal if its clone of term operations is [inline-graphic not available: see fulltext] where ρ1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\rho _{1}$$\end{document} and ρ2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\rho _{2}$$\end{document} are totally reflexive relations. We describe the subalgebra lattices of such algebras.
引用
收藏
页码:411 / 423
页数:12
相关论文