Subalgebra lattices of totally reflexive sub-preprimal algebras

被引:0
|
作者
Passawan Noppakaew
Worakrit Supaporn
机构
[1] Silpakorn University,Department of Mathematics, Faculty of Science
来源
关键词
Maximal clones; Subalgebras; Lattices; Categorical equivalence of clones; Varieties; 08A40; 08A30; 06B23; 18B99; 08B15;
D O I
暂无
中图分类号
学科分类号
摘要
For a set Q of relations on a finite set A, the set PolAQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{Pol}_{A}Q$$\end{document}, of all operations on A preserving all relations in Q, is a clone. The set of all clones on a given set forms a lattice under inclusion. Each of its maximal elements can be represented as PolA{ρ}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{Pol}_{A}\{\rho \}$$\end{document} where ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} is one of the six types of relations determined by Ivo G. Rosenberg. Four types of them are totally reflexive. These relations are bounded orders, non-trivial equivalence relations, central relations, and universal relations. An algebra A̲\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\underline{A}$$\end{document} is said to be totally reflexive sub-preprimal if its clone of term operations is [inline-graphic not available: see fulltext] where ρ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _{1}$$\end{document} and ρ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _{2}$$\end{document} are totally reflexive relations. We describe the subalgebra lattices of such algebras.
引用
收藏
页码:411 / 423
页数:12
相关论文
共 21 条